FURTHER MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

Further Mathematics Formulas

Business-related mathematics

simple interest:
$$I = \frac{PrT}{100}$$

compound interest:
$$A = PR^n$$
 where $R = 1 + \frac{r}{100}$

hire purchase: effective rate of interest
$$\approx \frac{2n}{n+1} \times \text{flat rate}$$

annuities:
$$A = PR^n - \frac{Q(R^n - 1)}{R - 1}$$
, where $R = 1 + \frac{r}{100}$

Geometry and trigonometry

area of a triangle:
$$\frac{1}{2}bh$$

area of a triangle:
$$\frac{1}{2}bc \sin A$$

area of a circle:
$$\pi r^2$$

volume of a sphere:
$$\frac{4}{3}\pi r^3$$

volume of a cone:
$$\frac{1}{3}\pi r^2 h$$

Pythagoras' theorem:
$$c^2 = a^2 + b^2$$

sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

cosine rule:
$$c^2 = a^2 + b^2 - 2ab \cos C$$

Graphs and relations

Straight line graphs

gradient:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

equation:
$$y - y_1 = m(x - x_1)$$
 gradient-point form

$$y = mx + c$$
 gradient-intercept form

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$
 two-point form

Number patterns and applications

arithmetic series:
$$a + (a+d) + \dots + (a+(n-1)d) = \frac{n}{2} \left[2a + (n-1)d \right] = \frac{n}{2} \left(a+l \right)$$

geometric series:
$$a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(1 - r^n)}{1 - r}, \ r \neq 1$$

infinite geometric series:
$$a + ar + ar^2 + ar^3 + ... = \frac{a}{1 - r}, |r| < 1$$

linear difference equations:
$$t_n = at_{n-1} + b = a^{n-1}t_1 + b\frac{(a^{n-1} - 1)}{a - 1}, a \neq 1$$
$$= a^nt_0 + b\frac{(a^n - 1)}{a - 1}$$

Networks and decision mathematics

Euler's formula:
$$v + f = e + 2$$

Statistics

seasonal index:
$$seasonal index = \frac{actual figure}{deseasonalised figure}$$