VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY

Victorian Certificate of Education 2013

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

STUDENT NUMBER

Figures Words

CHEMISTRY

Written examination

Tuesday 12 November 2013

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 11.45 am (2 hours 30 minutes)

QUESTION AND ANSWER BOOK

Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks
A	30	30	30
B	11	11	90
			Total 120

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers and one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 32 pages.
- A data book.
- Answer sheet for multiple-choice questions.

Instructions

- Write your **student number** in the space provided above on this page.
- Check that your **name** and **student number** as printed on your answer sheet for multiple-choice questions are correct, **and** sign your name in the space provided to verify this.
- All written responses must be in English.

At the end of the examination

- Place the answer sheet for multiple-choice questions inside the front cover of this book.
- You may keep the data book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

 $\ensuremath{\mathbb C}$ VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2013

SECTION A – Multiple-choice questions

Instructions for Section A

Answer **all** questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** or that **best answers** the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will not be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Question 1

Consider the following.

'Calculate the pressure exerted by 6.9 g of argon in a 0.07500 L container at 11.5 °C.'

The number of significant figures that should be expressed in the answer is

- **A.** 2
- **B.** 3
- **C.** 4
- **D.** 5

Question 2

The change in pH as a 0.10 M solution of a strong base is added to 20.0 mL of a 0.10 M solution of a weak acid is shown below.

Refer to the acid-base indicator data provided in the data book and identify the indicator that would be **least suitable** to detect the end point of this neutralisation.

- A. phenol red
- **B.** thymol blue
- C. phenolphthalein
- **D.** bromothymol blue

SECTION A - continued

In a titration, a 25.00 mL titre of 1.00 M hydrochloric acid neutralised a 20.00 mL aliquot of sodium hydroxide solution.

If, in repeating the titration, a student failed to rinse one of the pieces of glassware with the appropriate solution, the titre would be

- A. equal to 25.00 mL if water was left in the titration flask after final rinsing.
- **B.** less than 25.00 mL if the final rinsing of the burette is with water rather than the acid.
- C. greater than 25.00 mL if the final rinsing of the 20.00 mL pipette is with water rather than the base.
- **D.** greater than 25.00 mL if the titration flask had been rinsed with the acid prior to the addition of the aliquot.

Question 4

In volumetric analysis, the properties of the reactants, as well as the nature of the reaction between them, will determine if a back titration is to be used.

Consider the following cases.

- I The substance being analysed is volatile.
- II The substance being analysed is insoluble in water but is soluble in dilute acid.
- III The end point of the reaction is difficult to detect.

In which cases would a back titration be more suitable than a simple forward titration?

- **A.** I and II only
- B. I and III only
- C. II and III only
- **D.** I, II and III

Question 5

Two identical flasks, A and B, contain, respectively, 5.0 g of N_2 gas and 14.4 g of an unknown gas. The gases in both flasks are at standard laboratory conditions (SLC). The gas in flask B is

- **A.** H₂
- **B.** SO_2
- C. HBr
- **D.** C₄H₁₀

Question 6

Which one of the following reactions is a redox reaction?

- A. $2Al(s) + 3Cl_2(g) \rightarrow 2AlCl_3(s)$
- **B.** $Pb^{2+}(aq) + 2Cl^{-}(aq) \rightarrow PbCl_2(s)$
- C. NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H₂O(l)
- **D.** $CH_3OH(l) + HCOOH(l) \rightarrow HCOOCH_3(l) + H_2O(l)$

The thin layer chromatography plate shown below has a polar stationary phase. It was developed using hexane as the solvent.

Which sample has the most polar molecules?

- A. sample A
- **B.** sample B
- C. sample C
- **D.** There is not enough information to determine which sample has the most polar molecules.

Question 8

A forensic chemist tests mud from a crime scene to determine whether the mud contains zinc. Which one of the following analytical techniques would be best suited to this task?

- A. infrared spectroscopy
- **B.** thin layer chromatography
- C. atomic absorption spectroscopy
- D. nuclear magnetic resonance spectroscopy

Question 9

The systematic IUPAC name for the molecule shown above is

- A. ethyl ethanoate.
- **B.** ethyl propanoate.
- C. propyl ethanoate.
- **D.** methyl propanoate.

SECTION A – continued

The systematic IUPAC name for the product of the above chemical reaction is

- A. 1-chlorobutane.
- B. 2-chlorobutane.
- C. 3-chlorobutane.
- D. 4-chlorobutane.

Question 11

Australian jellyfish venom is a mixture of proteins for which there is no antivenom. Jellyfish stings are painful, can leave scars and, in some circumstances, can cause death.

Some commercially available remedies disrupt ionic interactions between the side chains on amino acid residues.

These products most likely disrupt the protein's

- A. primary structure only.
- **B.** secondary structure only.
- C. tertiary structure only.
- **D.** primary, secondary and tertiary structures.

SECTION A – continued TURN OVER

Which figure best represents the bonding between adenine and thymine in the structure of DNA?

Question 13

The reaction pathway for the synthesis of paracetamol, a mild painkiller, is provided below.

Ĥ

Which step or steps in this synthesis involve(s) a reduction reaction?

- А. step I only
- B. step II only
- С. steps I and III only
- steps I, II and III D.

SECTION A – continued

Use the following information to answer Questions 14 and 15.

 $Cu(s) + 4HNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2NO_2(g) + 2H_2O(l)$

Question 14

Which one of the following will not increase the rate of the above reaction?

- A. decreasing the size of the solid copper particles
- **B.** increasing the temperature of HNO₃ by 20 °C
- C. increasing the concentration of HNO_3
- **D.** allowing NO_2 gas to escape

Question 15

In the above reaction, the number of successful collisions per second is a small fraction of the total number of collisions.

The major reason for this is that

- A. the nitric acid is ionised in solution.
- **B.** some reactant particles have too much kinetic energy.
- C. the kinetic energy of the particles is reduced when they collide with the container's walls.
- **D.** not all reactant particles have the minimum kinetic energy required to initiate the reaction.

Question 16

$C(s) + O_2(g) \to CO_2(g)$	$\Delta H = -393.5 \text{ kJ mol}^{-1}$
$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$	$\Delta H = -571.6 \text{ kJ mol}^{-1}$

Given the information above, what is the enthalpy change for the following reaction?

$$C(s) + 2H_2O(l) \rightarrow CO_2(g) + 2H_2(g)$$

A. –965.1 kJ mol⁻¹

- **B.** $-107.7 \text{ kJ mol}^{-1}$
- **C.** +178.1 kJ mol⁻¹
- **D.** +679.3 kJ mol⁻¹

SECTION A – continued TURN OVER Use the following information to answer Questions 17 and 18.

$$2\text{NOCl}(g) \implies 2\text{NO}(g) + \text{Cl}_2(g)$$

⊿H is positive.

Question 17

The equilibrium expression for this reaction is

A.
$$\frac{2[\text{NO}][\text{Cl}_2]}{2[\text{NOCl}]}$$

$$\mathbf{B.} \quad \frac{[\mathrm{NO}]^2[\mathrm{Cl}_2]}{[\mathrm{NOC1}]^2}$$

C.
$$\frac{2[\text{NOC1}]}{2[\text{NO1}][Cl_1]}$$

D.
$$\frac{[\text{NOC1}]^2}{[\text{NO}]^2[\text{C1}_2]}$$

Question 18

A concentration-time graph for this system is shown below.

What event occurred at time t to cause the change in equilibrium concentrations?

- A. The pressure was decreased at a constant temperature.
- **B.** The temperature was increased at a constant volume.
- C. A catalyst was added at a constant temperature and volume.
- **D.** Additional NO gas was added at a constant volume and temperature.

Question 19

Which one of the following solutions has the highest pH?

- **A.** 0.01 M HCOOH
- **B.** 1.0 M HCOOH
- **C.** 0.01 M CH₃COOH
- **D.** 1.0 M CH₃COOH

ш ш 3 0 Ъ

SECTION A – continued

The ionisation of ethanoic acid can be represented by the equation

 $CH_3COOH(aq) + H_2O(l) \implies CH_3COO^{-}(aq) + H_3O^{+}(aq)$

The percentage ionisation of ethanoic acid is greatest in a

- A. $50 \text{ mL } 1.0 \text{ M } \text{CH}_3\text{COOH solution}$.
- **B.** 50 mL 0.1 M CH₃COOH solution.
- C. 100 mL 0.1 M CH₃COOH solution.
- D. 100 mL 0.01 M CH₃COOH solution.

Question 21

Phosphoric acid is present in cola-flavoured soft drinks and has been linked to decreased bone density. It is a triprotic acid with the following K_a values at 25 °C.

$$H_{3}PO_{4}(aq) + H_{2}O(l) \rightleftharpoons H_{3}O^{+}(aq) + H_{2}PO_{4}^{-}(aq) \qquad K_{a1} = 7.25 \times 10^{-3}$$
$$H_{2}PO_{4}^{-}(aq) + H_{2}O(l) \rightleftharpoons H_{3}O^{+}(aq) + HPO_{4}^{2-}(aq) \qquad K_{a2} = 6.31 \times 10^{-8}$$
$$HPO_{4}^{2-}(aq) + H_{2}O(l) \rightleftharpoons H_{3}O^{+}(aq) + PO_{4}^{3-}(aq) \qquad K_{a3} = 3.98 \times 10^{-13}$$

To determine the approximate pH of a 0.1 M phosphoric acid solution, a student should use the value of

- A. K_{a1} only
- **B.** K_{a3} only
- **C.** $K_{a1} \times K_{a3}$ only
- **D.** $K_{a1} \times K_{a2} \times K_{a3}$

Question 22

Which of the following alternatives lists only renewable energy resources?

- A. coal, diesel, ethanol
- B. coal, crude oil, uranium
- C. ethanol, methane, diesel
- **D.** crude oil, natural gas, ethanol

Question 23

What is the enthalpy change when 40 g of NaOH is dissolved in one litre of water, given that the temperature of the solution increased by 10.6 °C?

- **A.** −0.44 kJ mol^{−1}
- **B.** -4.4 kJ mol^{-1}
- C. -44 kJ mol^{-1}
- **D.** -440 kJ mol^{-1}

SECTION A – continued TURN OVER

Three beakers, each containing an iron strip and a 1.0 M solution of a metal salt, were set up as follows.

A reaction will occur in beaker(s)

- A. I and II only.
- **B.** I and III only.
- C. II and III only.
- **D.** III only.

Question 25

A student constructs the following galvanic cell.

The student predicts that the following overall reaction will occur.

 $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$

However, no reaction is observed.

This is most likely because

- A. the difference between the E° values is too small for a reaction to occur.
- B. hydrogen peroxide will oxidise water in preference to itself.
- **C.** the student did not construct standard half-cells.
- **D.** the rate of the reaction is extremely slow.

SECTION A – continued

Use the following information to answer Questions 26 and 27.

Four standard galvanic cells are set up as indicated below.

cell I	a Br ₂ /Br ⁻ standard half-cell connected to a Cu ²⁺ /Cu standard half-cell
cell II	an Sn^{2+}/Sn standard half-cell connected to a Zn^{2+}/Zn standard half-cell
cell III	a Br_2/Br^- standard half-cell connected to an I_2/I^- standard half-cell
cell IV	a Co ²⁺ /Co standard half-cell connected to an Fe ³⁺ /Fe ²⁺ standard half-cell

Question 26

Which cell would be expected to develop the largest potential difference?

- **A.** I
- **B.** II
- C. III
- **D.** IV

Question 27

The reaction occurring at the cathode as cell IV is discharged is

- A. $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$
- **B.** $Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$
- C. $Co(s) \rightarrow Co^{2+}(aq) + 2e^{-}$
- **D.** $\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$

Question 28

The main reason an aqueous solution of potassium nitrate, KNO₃, is used in salt bridges is

A.	K ⁺ (aq) is a strong oxidant.	$NO_3^{-}(aq)$ is a weak reductant.
B.	$K^+(aq)$ is a weak reductant.	$NO_3^{-}(aq)$ is a strong oxidant.
C.	K ⁺ (aq) salts are soluble in water.	$NO_3^{-}(aq)$ salts are soluble in water.
D.	K ⁺ (aq) ions will migrate to the anode half-cell.	$NO_3^{-}(aq)$ ions will migrate to the cathode half-cell.

The lead acid battery used in cars consists of secondary galvanic cells.

The following equations relate to the lead acid battery.

$$PbSO_{4}(s) + 2e^{-} \iff Pb(s) + SO_{4}^{2-}(aq) \qquad E^{\circ} = -0.36 V$$

$$PbO_{2}(s) + SO_{4}^{2-}(aq) + 4H^{+}(aq) + 2e^{-} \iff PbSO_{4}(s) + 2H_{2}O(l) \qquad E^{\circ} = 1.69 V$$

When an external power source is used to recharge a flat lead acid battery

- A. the concentration of sulfuric acid decreases.
- **B.** $PbSO_4$ is both oxidised and reduced.
- C. the mass of metallic lead decreases.

D. PbO_2 is oxidised to Pb.

Question 30

A student prepares 1.0 M aqueous solutions of AgNO₃, Fe(NO₃)₂ and KNO₃.

Equal volumes of each solution are placed in separate beakers, identical platinum electrodes are placed in each beaker and each solution undergoes electrolysis with the same current applied for 5.0 minutes under SLC. Each cathode is then dried and weighed to determine mass change.

Assume that the concentrations of the solutions have decreased only slightly.

In order of increasing mass, the metals deposited on the three cathodes are likely to be

- A. potassium, silver, iron.
- B. silver, iron, potassium.
- C. iron, potassium, silver.
- D. potassium, iron, silver.

END OF SECTION A

SECTION B

Instructions for Section B

Answer **all** questions in the spaces provided. Write using black or blue pen. To obtain full marks for your responses you should

- give simplified answers with an appropriate number of significant figures to all numerical questions; unsimplified answers will not be given full marks.
- show all working in your answers to numerical questions. No marks will be given for an incorrect answer unless it is accompanied by details of the working.
- make sure chemical equations are balanced and that the formulas for individual substances include an indication of state; for example, H₂(g); NaCl(s)

Question 1 (2 marks)

High-performance liquid chromatography is used to determine the amount of caffeine in a sample of a soft drink. The chromatogram below shows the detector response when a standard solution of caffeine with a concentration of 200 mg L^{-1} is measured using the instrument.

a. What is the retention time of caffeine in this experiment?

1 mark

1 mark

b. On the chromatogram above, sketch the detector response when a commercial soft drink with a caffeine content of 350 mg L^{-1} is measured using the same instrument.

SECTION B – continued TURN OVER

Question 2 (4 marks)

The strength of the eggshell of birds is determined by the calcium carbonate, $CaCO_3$, content of the eggshell. The percentage of calcium carbonate in the eggshell can be determined by gravimetric analysis. 0.412 g of clean, dry eggshell was completely dissolved in a minimum volume of dilute hydrochloric acid.

 $CaCO_3(s) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + CO_2(g) + H_2O(l)$

An excess of a basic solution of ammonium oxalate, $(NH_4)_2C_2O_4$, was then added to form crystals of calcium oxalate monohydrate, $CaC_2O_4.H_2O.$

The suspension was filtered and the crystals were then dried to constant mass.

0.523 g of CaC₂O₄.H₂O was collected.

a. Write a balanced equation for the formation of the calcium oxalate monohydrate precipitate.

b. Determine the percentage, by mass, of calcium carbonate in the eggshell.

3 marks

1 mark

SECTION B - continued

14

2 marks

1 mark

1 mark

1 mark

2 marks

Question 3 (7 marks) Spider webs are very strong and elastic. Spider web silk is a protein that mainly consists of glycine and alamine residues. a. Assuming that these amino acid residues alternate in a spider web, draw a section of the spider web protein that contains at least three amino acid residues. b. What is the name of the bond between each amino acid residue? c. What type of polymerisation reaction occurs in the formation of spider web silk? Glycine forms an ion at a pH of 6 that has both a positive and negative charge. d. Draw the structure of a glycine ion at a pH of less than 4.		15
Spider webs are very strong and elastic. Spider web silk is a protein that mainly consists of glycine and alamine residues. a. Assuming that these amino acid residues alternate in a spider web, draw a section of the spider web protein that contains at least three amino acid residues. b. What is the name of the bond between each amino acid residue? c. What type of polymerisation reaction occurs in the formation of spider web silk? Glycine forms an ion at a pH of 6 that has both a positive and negative charge. d. Draw the structure of a glycine ion at a pH of less than 4. e. Describe the bonds that contribute to the spiral secondary structure of this protein.	Qu	estion 3 (7 marks)
 a. Assuming that these amino acid residues alternate in a spider web, draw a section of the spider web protein that contains at least three amino acid residues. b. What is the name of the bond between each amino acid residue? c. What type of polymerisation reaction occurs in the formation of spider web silk? Glycine forms an ion at a pH of 6 that has both a positive and negative charge. d. Draw the structure of a glycine ion at a pH of less than 4. e. Describe the bonds that contribute to the spiral secondary structure of this protein. 	Spi alar	der webs are very strong and elastic. Spider web silk is a protein that mainly consists of glycine and nine residues.
 b. What is the name of the bond between each amino acid residue? c. What type of polymerisation reaction occurs in the formation of spider web silk? Glycine forms an ion at a pH of 6 that has both a positive and negative charge. d. Draw the structure of a glycine ion at a pH of less than 4. e. Describe the bonds that contribute to the spiral secondary structure of this protein. 	a.	Assuming that these amino acid residues alternate in a spider web, draw a section of the spider web protein that contains at least three amino acid residues.
 c. What type of polymerisation reaction occurs in the formation of spider web silk? Glycine forms an ion at a pH of 6 that has both a positive and negative charge. d. Draw the structure of a glycine ion at a pH of less than 4. e. Describe the bonds that contribute to the spiral secondary structure of this protein. 	b.	What is the name of the bond between each amino acid residue?
Glycine forms an ion at a pH of 6 that has both a positive and negative charge. d. Draw the structure of a glycine ion at a pH of less than 4. e. Describe the bonds that contribute to the spiral secondary structure of this protein.	c.	What type of polymerisation reaction occurs in the formation of spider web silk?
e. Describe the bonds that contribute to the spiral secondary structure of this protein.	Gly d.	ccine forms an ion at a pH of 6 that has both a positive and negative charge. Draw the structure of a glycine ion at a pH of less than 4.
	e.	Describe the bonds that contribute to the spiral secondary structure of this protein.

SECTION B – continued **TURN OVER**

www.theallpapers.com

Question 4 (14 marks)

The industrial production of hydrogen involves the following two reactions.

reaction I	$CH_4(g) + H_2O(g)$	\rightleftharpoons	$CO(g) + 3H_2(g)$	$\Delta H = +206 \text{ kJ mol}^{-1}$
reaction II	$CO(g) + H_2O(g)$	\rightleftharpoons	$CO_2(g) + H_2(g)$	$\Delta H = -41 \text{ kJ mol}^{-1}$

a. i. Write 'increase', 'decrease' or 'no change' in the table below to identify the expected effect of each change to reaction I and reaction II on the equilibrium yield of hydrogen.

Change to reaction I and reaction II	Effect of the change on the hydrogen yield in reaction I	Effect of the change on the hydrogen yield in reaction II
addition of steam at a constant volume and temperature		
increase in temperature at a constant volume		
addition of a suitable catalyst at a constant volume and temperature		

ii. Explain the effect of decreasing the volume, at constant temperature, on the hydrogen equilibrium yield in each reaction. 4 marks

reaction I

reaction II

Z

3 marks

SECTION B – Question 4 – continued

	iii.	What is the effect of an increase in temperature at constant volume on the rate of hydrogen production in each reaction? reaction I	2 marks
		reaction II	_
The	react	tion between hydrogen and oxygen is the basis of energy production in a number of fuel cells. $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ $\Delta H = -571.6 \text{ kJ mol}^{-1}$	_
).	An	alkaline electrolyte is used in a particular hydrogen/oxygen fuel cell.	
	Wri i.	te a balanced half-equation for the reaction occurring at the cathode	1 mark
	ii.	anode.	– 1 mark
	Wha	at is the maximum voltage predicted for one alkaline hydrogen/oxygen fuel cell under standard ditions?	 1 mark
/luc	h of	the hydrogen used in fuel cells is produced from methane.	
		$CH_4(g) + H_2O(g) \implies CO(g) + 3H_2(g)$	
		$CO(g) + H_2O(g) \implies CO_2(g) + H_2(g)$	
l .	Exp fuel	lain why methane generated by biomass is a renewable fuel while methane derived from fossil s is not.	2 marks

SECTION B – continued TURN OVER

17

5 0111	IN EAANI 10	
Que A 20	estion 5 (10 marks) 0.00 mL aliquot of 0.200 M CH ₃ COOH (ethanoic acid) is titrated with 0.150 M NaOH.	
The	equation for the reaction between the ethanoic acid and NaOH solution is represented as	
	$OH^{-}(aq) + CH_{3}COOH(aq) \rightarrow H_{2}O(l) + CH_{3}COO^{-}(aq)$	
a.	What volume of the NaOH solution is required to completely react with the ethanoic acid?	2 marks
b.	Define the terms 'equivalence point' and 'end point'.	2 marks
	SECTION D. Origo	tion 5 continue
	SECTION D - Ques	

www.theallpapers.com

c.	Etha i.	anoic acid is a weak acid. Write an expression for the acidity constant of ethanoic acid.	1 mark
	ii.	Calculate the pH of the 0.200 M ethanoic acid solution before any NaOH solution has been added. Assume that the equilibrium concentration of the ethanoic acid is 0.200 M.	3 marks
d.	Con com i.	 asider the point in the titration where the volume of NaOH added is exactly half that required for applete neutralisation. Tick (✓) the box next to the statement that best describes the relative concentrations of ethanoic acid and ethanoate ions at this point. The concentration of ethanoic acid is less than the concentration of ethanoate ions. 	1 mark
		The concentration of ethanoic acid is equal to the concentration of ethanoate ions.	
	ii.	What is the relationship between the concentration of H_3O^+ and K_a at this point?	1 mark
		SECTION B	- continue

CCTION B – continued TURN OVER

19

SECTION B – Question 6 – continued

ш

5

Ш

LOW

6

3

Z

1 mark

d. Sketch the energy profile for the complete combustion of compound C using the axis below, labelling the energy of the reactants, the products and the activation energy.

energy

SECTION B – continued TURN OVER

21

Question 7 (14 marks)

An electrolytic process known as electrorefining is the final stage in producing highly purified copper. In a small-scale trial, a lump of impure copper is used as one electrode and a small plate of pure copper is used as the other electrode. The electrolyte is a mixture of aqueous sulfuric acid and copper sulfate.

a. Indicate in the box labelled 'polarity' on the diagram above, the polarity of the impure copper electrode.

In a trial experiment, the electrodes were weighed before and after electrolysis. The results are provided in the following table.

	Mass of lump of impure copper	Mass of pure copper
before electrolysis	10.30 kg	1.55 kg
after electrolysis	0.855 kg	9.80 kg

b. On the basis of these results

• calculate a percentage purity of the lump of impure copper

indicate **one** factor that may affect the accuracy of these results.

1 mark

4 marks

SECTION B – Question 7 – continued

22

		_
		_
		_
		_
		_
nps of in el and z	pure copper typically contain impurities such as silver, gold, cobalt, nickel and zinc. Cobalt, nc are oxidised from the copper lump and exist as ions in the electrolyte. Silver and gold are	
Why is	and form part of an insoluble sludge at the base of the cell. it important that silver and gold are not present as cations in the electrolyte?	1 mar
		_
		_
		_
		_
		_
		-
		-
		_
		_

www.theallpapers.com

Chemists suspected that an impure copper lump contained a significant amount of cobalt. Cobalt would be oxidised to Co^{2+} ions that would remain in the electrolyte solution. The spectrogram below gives the results of analysis of the solution. The two ions absorb at distinctly different wavelengths.

e. i. Which analytical technique was used to perform this analysis?

A calibration graph was constructed using $Co^{2+}(aq)$ solutions of known concentrations.

ii. What wavelength would you select to construct this curve?

1 mark

1 mark

SECTION B – Question 7 – continued

1 mark

SECTION B – continued TURN OVER

l .	Write an equation for the complete combustion of ethanol.	1 mark
•	Which reagent is in excess? Calculate the amount, in moles, of the reagent identified as being in excess.	3 marks
		-
		-
		-

26

SECTION B – Question 8 – continued

Ethanol for use as a biofuel can be produced from the fermentation of monosaccharides, such as gluco	ose,
$C_6H_{12}O_6$, which is derived from polysaccharides found in plants.	

b. Write an equation for the fermentation reaction of glucose.

1 mark

Genetically modified yeast is used to convert xylose, $C_5H_{10}O_5$, another monosaccharide found in plant fibres, to ethanol.

 $3C_5H_{10}O_5(aq) \rightarrow 5C_2H_5OH(l) + 5CO_2(g)$

c. In a trial, 1.00 kg of pure xylose is completely converted to ethanol and carbon dioxide.

i. Calculate the volume, in mL, of ethanol that is produced. Note: The density of ethanol is 0.785 g mL^{-1} .

3 marks

2 marks

ii. Determine the volume of carbon dioxide gas at 20.0 °C and 750.0 mm pressure produced by the xylose.

SECTION B – continued TURN OVER

27

Question 9 (7 marks)

An unknown organic compound, molecular formula $C_4H_8O_2$, was presented to a spectroscopy laboratory for identification. A mass spectrum, infrared spectrum, and both ¹H NMR (proton NMR) and ¹³C NMR spectra were produced. These are shown on the opposite page.

The analytical chemist identified the compound as ethyl ethanoate.

A report was submitted to justify the interpretation of the spectra. The chemist's report indicating information about the structure provided by the ¹³C NMR spectrum has been completed for you.

a. Complete the rest of the report by identifying **one** piece of information from each spectrum that can be used to identify the compound. Indicate how the interpretation of this information justifies the chemist's analysis.

6 marks

Spectroscopic technique	Information provided
¹³ C NMR spectrum	The four signals in the 13 C NMR spectrum indicate four different carbon environments. CH ₃ COOCH ₂ CH ₃ has four different carbon environments.
mass spectrum	
infrared spectrum	
¹ H NMR spectrum	

Another compound has the same molecular formula as ethyl ethanoate. However, the carbon ¹³C NMR spectrum of this compound shows only three signals.
 Draw a possible structure of this compound.

1 mark

SECTION B – Question 9 – continued

NO WRITING ALLOWED IN THIS AREA

SECTION B – continued TURN OVER

Question 10 (8 marks)

Olive oil, which has been part of the human diet for thousands of years, is derived from the fruit of the olive tree.

The main fatty acid that makes up olive oil is oleic acid, $CH_3(CH_2)_7CH = CH(CH_2)_7 COOH$.

The triglyceride formed from three oleic acid molecules is glycerol trioleate, $C_{57}H_{104}O_6$. The molar mass of glycerol trioleate is 884 g mol⁻¹.

i. An incomplete semi-structural formula of glycerol trioleate is provided below. a. Complete the semi-structural formula of glycerol trioleate.

$$CH_{3}(CH_{2})_{7}CH = CH(CH_{2})_{7}C - O$$

- ii. Explain why oleic acid is described as a mono-unsaturated fatty acid.
- 1.00 g of olive oil is burned in a bomb calorimeter with excess pure oxygen. b. i. The calibration factor of the calorimeter is 9112 J $^{\circ}C^{-1}$. The burning of the olive oil increased the temperature in the bomb calorimeter from 20.0 °C to 22.4 °C. Calculate the heat released by 1.00 g of olive oil.

ii. Assuming the only constituent of olive oil is glycerol trioleate, write a combustion reaction for this molecule.

1 mark

1 mark

2 marks

2 marks

31 2013 CHEM EXAM iii. Determine the Δ H for the reaction in **part b.ii**. 2 marks SECTION B – continued **TURN OVER** www.theallpapers.com

2013 CHEM EXAM

Question 11 (7 marks)

The following is a student's summary of catalysts. It contains some correct and incorrect statements.

- a. A catalyst increases the rate of a reaction.
- b. All catalysts are solids.
- c. The mass of a catalyst is the same before and after the reaction.
- d. A catalyst lowers the enthalpy change of a reaction, enabling more particles to have sufficient energy to successfully react.

32

- e. A catalyst increases the value of the equilibrium constant, thus favouring the extent of the forward reaction, resulting in a greater yield of product.
- f. All catalysts align the reactant particles in an orientation that is favourable for a reaction to occur.
- g. The effectiveness of a metal catalyst is not dependent upon its surface area.
- h. Enzymes are biological catalysts that catalyse a specific biochemical reaction once only.
- i. The effectiveness of an enzyme is independent of temperature.

a. Identify **two** correct statements.

1 mark

b. Evaluate the student's summary by identifying **three** incorrect statements. In each case, explain why it is incorrect.

6 marks

END OF QUESTION AND ANSWER BOOK

VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY

 \checkmark

Victorian Certificate of Education 2013

CHEMISTRY

Written examination

Tuesday 12 November 2013

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 11.45 am (2 hours 30 minutes)

DATA BOOK

Directions to students

• A question and answer book is provided with this data book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Table of contents

		page
1.	Periodic table of the elements	3
2.	The electrochemical series	4
3.	Physical constants	5
4.	SI prefixes, their symbols and values	5
5.	¹ H NMR data	5–6
6.	¹³ C NMR data	7
7.	Infrared absorption data	7
8.	2-amino acids (α-amino acids)	8–9
9.	Formulas of some fatty acids	10
10.	Structural formulas of some important biomolecules	10
11.	Acid-base indicators	11
12.	Acidity constants, $K_{\rm a}$, of some weak acids at 25 °C	11
13.	Values of molar enthalpy of combustion of some common fuels at 298 K and 101.3 kPa	11

S	
element	
of the	
lic table	
Period	
Ϊ.	

2 He 4.0 Helium	10 Ne 20.2 Neon	18 Ar 39.9 Argon	36 Kr 83.8 Krypton	54 Xe 131.3 Xenon	86 Rn (222) Radon	118 Uuo (294)	
	9 F 19.0 Fluorine	17 CI 35.5 Chlorine	35 Br 79.9 Bromine	53 I 126.9 Iodine	85 At (210) Astatine	117 Uus (294)	
	8 O 16.0 Oxygen	16 S 32.1 Sulfur	34 Se 79.0 Selenium	52 Te 127.6 Tellurium	84 Po (210) Polonium	116 Uuh (293)	71 Lu 175.0 Lutetium
	7 N 14.0 Nitrogen	15 P 31.0 Phosphorus	33 As 74.9 Arsenic	51 Sb 121.8 Antimony	83 Bi 209.0 Bismuth	115 Uup (288)	70 Yb 173.1 Ytterbium
	6 C 12.0 Carbon	14 Si 28.1 Silicon	32 Ge 72.6 Germanium	50 Sn 118.7 Tin	82 Pb 207.2 Lead	114 Uuq (289)	69 Tm 168.9 Thulium
	5 B 10.8 Boron	13 Al 27.0 Aluminium	31 Ga 69.7 Gallium	49 In 114.8 Indium	81 T1 204.4 Thallium	113 Uut (284)	68 Er 167.3 Erbium
		I	30 Zn 65.4 Zinc	48 Cd 112.4 Cadmium	80 Hg 200.6 Mercury	112 Cn (285) Copernicium	67 Ho 164.9 Holmium
	l of element of element		29 Cu 63.5 Copper	47 Ag 107.9 Silver	79 Au 197.0 Gold	111 Rg (272) Koentgenium	66 Dy 162.5 Dysprosium
	symbo .0 .0 name c		28 Ni 58.7 Nickel	46 Pd 106.4 Palladium	78 Pt 195.1 Platinum	110 Ds (271) Farmstadtium	65 Tb 158.9 Terbium
	mber 75 Au mass 197 Gol		27 C0 58.9 Cobalt	45 Rh 102.9 Rhodium	77 Ir 192.2 Iridium	109 Mt (268) Meitherium D	64 Gd 157.3 Gadolinium
	atomic nu lative atomic		26 Fe 55.8 Iron	44 Ru 101.1 Ruthenium	76 Os 190.2 Osmium	108 Hs (267) Hassium	63 Eu 152.0 Europium
	Ie		25 Mn 54.9 Manganese	43 Tc (98) Fechnetium	75 Re 186.2 Rhenium	107 Bh (264) Bohrium	62 Sm 150.4 Samarium
			24 Cr 52.0 Chromium	42 Mo 96.0 folybdenum	74 W 183.8 Tungsten	106 Sg (266) Seaborgium	61 Pm (145) Promethium
			23 V 50.9 Vanadium	41 Nb 92.9 Niobium	73 Ta 180.9 Tantalum	105 Db (262) Dubnium	60 Nd 144.2 Veodymium
			22 Ti 47.9 Titanium	40 Zr 91.2 Zirconium	72 Hf 178.5 Hafnium	104 Rf (261) uttherfordium	59 Pr 140.9
			21 Sc 45.0 Scandium	39 Y 88.9 Yttrium	57 La 138.9 Lanthanum	89 Ac (227) Actinium R	58 Ce 140.1 Cerium
	4 Be 9.0 Beryllium	12 Mg 24.3 Magnesium	20 Ca 40.1 Calcium	38 Sr 87.6 Strontium	56 Ba 137.3 Barium	88 Ra (226) Radium	
H H Hydrogen	3 Li 6.9 Lithium	11 Na 23.0 Sodium	19 K 39.1 Potassium	37 Rb 85.5 Rubidium	55 Cs 132.9 Caesium	87 Fr (223) Francium	

103 Lr (262) Lawrencium

102 No (259) Nobelium

101 Md (258) Mendelevium

100 Fm (257) Fermium

99 Es (252) Einsteinium

98 Cf (251) Californium

97 Bk (247) Berkelium

96 Cm (247) Curium

95 Am (243) Americium

94 Pu (244) Plutonium

93 Np (237) Neptunium

92 U 238.0 Uranium

91 Pa 231.0 Protactinium

90 Th 232.0 Thorium The value in brackets indicates the mass number of the longest-lived isotope.

TURN OVER www.theallpapers.com

2. The electrochemical series

	E° in volt
$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$	+2.87
$\mathrm{H_2O_2(aq)} + 2\mathrm{H^+(aq)} + 2\mathrm{e^-} \rightleftharpoons 2\mathrm{H_2O(l)}$	+1.77
$\operatorname{Au}^+(\operatorname{aq}) + \operatorname{e}^- \rightleftharpoons \operatorname{Au}(\operatorname{s})$	+1.68
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(1)$	+1.23
$Br_2(l) + 2e^- \Longrightarrow 2Br^-(aq)$	+1.09
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \rightleftharpoons H_2O_2(aq)$	+0.68
$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$S(s) + 2H^+(aq) + 2e^- \Longrightarrow H_2S(g)$	+0.14
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{g})$	0.00
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	-0.23
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Co}(s)$	-0.28
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$	-0.76
$2H_2O(l) + 2e^- \Longrightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$	-1.03
$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$	-1.67
$Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s)$	-2.34
$Na^+(aq) + e^- \rightleftharpoons Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$	-2.87
$K^+(aq) + e^- \rightleftharpoons K(s)$	-2.93
$Li^+(aq) + e^- \rightleftharpoons Li(s)$	-3.02

3. Physical constants

Avogadro's constant ($N_{\rm A}$) = 6.02 × 10²³ mol⁻¹ Charge on one electron $= -1.60 \times 10^{-19} \text{ C}$ Faraday constant (F) = 96 500 C mol⁻¹ Gas constant (R) = 8.31 J K⁻¹mol⁻¹ Ionic product for water $(K_w) = 1.00 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$ at 298 K (Self ionisation constant) Molar volume (V_m) of an ideal gas at 273 K, 101.3 kPa (STP) = 22.4 L mol⁻¹ Molar volume (V_m) of an ideal gas at 298 K, 101.3 kPa (SLC) = 24.5 L mol⁻¹ Specific heat capacity (c) of water = 4.18 J g⁻¹ K⁻¹ Density (d) of water at 25 °C = 1.00 g mL^{-1} 1 atm = 101.3 kPa = 760 mm Hg $0 \circ C = 273 \text{ K}$

5

4. SI prefixes, their symbols and values

SI prefix	Symbol	Value
giga	G	109
mega	М	10 ⁶
kilo	k	10 ³
deci	d	10^{-1}
centi	с	10-2
milli	m	10 ⁻³
micro	μ	10-6
nano	n	10 ⁻⁹
pico	р	10^{-12}

5. ¹H NMR data

Typical proton shift values relative to TMS = 0

These can differ slightly in different solvents. Where more than one proton environment is shown in the formula, the shift refers to the ones in bold letters.

Type of proton	Chemical shift (ppm)
R–CH ₃	0.8–1.0
R-CH ₂ -R	1.2–1.4
$RCH = CH - CH_3$	1.6–1.9
R ₃ –CH	1.4–1.7
$CH_3 - C$ or $CH_3 - C$ O OR NHR	2.0

TURN OVER www.theallpapers.com

Type of proton	Chemical shift (ppm)
R CH ₃ U O	2.1–2.7
$R-CH_2-X$ (X = F, Cl, Br or I)	3.0-4.5
R–С H₂– ОН, R ₂ –С H –ОН	3.3–4.5
R—C NHCH ₂ R	3.2
R—O—CH ₃ or R—O—CH ₂ R	3.3
о Ш С — С — С Н3	2.3
R—CO OCH ₂ R	4.1
R–O–H	1–6 (varies considerably under different conditions)
R-NH ₂	1–5
$RHC = CH_2$	4.6-6.0
ОН	7.0
Н	7.3
R—C NHCH ₂ R	8.1
R—C H	9–10
R—CO O—H	9–13

6. ¹³C NMR data

Type of carbon	Chemical shift (ppm)
R–CH ₃	8–25
R-CH ₂ -R	20–45
R ₃ -CH	40–60
R ₄ -C	36–45
R-CH ₂ -X	15-80
R ₃ C–NH ₂	35–70
R-CH ₂ -OH	50–90
RC≡CR	75–95
$R_2C=CR_2$	110–150
RCOOH	160–185

7. Infrared absorption data

Characteristic range for infrared absorption

Bond	Wave number (cm ⁻¹)
C–Cl	700-800
C–C	750-1100
С–О	1000–1300
C=C	1610–1680
C=O	1670–1750
O-H (acids)	2500-3300
С–Н	2850-3300
O-H (alcohols)	3200-3550
N–H (primary amines)	3350-3500

8. 2-amino acids (α-amino acids)

9.	Formulas	of some	fatty	acids

Name	Formula
Lauric	C ₁₁ H ₂₃ COOH
Myristic	C ₁₃ H ₂₇ COOH
Palmitic	C ₁₅ H ₃₁ COOH
Palmitoleic	C ₁₅ H ₂₉ COOH
Stearic	C ₁₇ H ₃₅ COOH
Oleic	C ₁₇ H ₃₃ COOH
Linoleic	C ₁₇ H ₃₁ COOH
Linolenic	C ₁₇ H ₂₉ COOH
Arachidic	C ₁₉ H ₃₉ COOH
Arachidonic	C ₁₉ H ₃₁ COOH

10. Structural formulas of some important biomolecules

deoxyribose

11. Acid-base indicators

Name	pH range	Colour change		K _a
		Acid	Base	
Thymol blue	1.2–2.8	red	yellow	2×10^{-2}
Methyl orange	3.1-4.4	red	yellow	2×10^{-4}
Bromophenol blue	3.0-4.6	yellow	blue	6×10^{-5}
Methyl red	4.2-6.3	red	yellow	8 × 10 ⁻⁶
Bromothymol blue	6.0–7.6	yellow	blue	1×10^{-7}
Phenol red	6.8-8.4	yellow	red	1×10^{-8}
Phenolphthalein	8.3–10.0	colourless	red	5×10^{-10}

12. Acidity constants, K_a , of some weak acids at 25 °C

Name	Formula	K _a
Ammonium ion	NH4 ⁺	5.6×10^{-10}
Benzoic	C ₆ H ₅ COOH	$6.4 imes 10^{-5}$
Boric	H ₃ BO ₃	$5.8 imes10^{-10}$
Ethanoic	СН ₃ СООН	$1.7 imes 10^{-5}$
Hydrocyanic	HCN	$6.3 imes 10^{-10}$
Hydrofluoric	HF	$7.6 imes 10^{-4}$
Hypobromous	HOBr	$2.4 imes 10^{-9}$
Hypochlorous	HOCI	$2.9 imes10^{-8}$
Lactic	HC ₃ H ₅ O ₃	$1.4 imes10^{-4}$
Methanoic	НСООН	$1.8 imes10^{-4}$
Nitrous	HNO ₂	7.2×10^{-4}
Propanoic	C ₂ H ₅ COOH	1.3×10^{-5}

13. Values of molar enthalpy of combustion of some common fuels at 298 K and 101.3 kPa

Substance	Formula	State	$\Delta H_{\rm c} ({\rm kJ \ mol^{-1}})$
hydrogen	H ₂	g	-286
carbon (graphite)	С	S	-394
methane	CH ₄	g	-889
ethane	C ₂ H ₆	g	-1557
propane	C ₃ H ₈	g	-2217
butane	C ₄ H ₁₀	g	-2874
pentane	C ₅ H ₁₂	1	-3509
hexane	C ₆ H ₁₄	1	-4158
octane	C ₈ H ₁₈	1	-5464
ethene	C ₂ H ₄	g	-1409
methanol	СН ₃ ОН	1	-725
ethanol	C ₂ H ₅ OH	1	-1364
1-propanol	CH ₃ CH ₂ CH ₂ OH	1	-2016
2-propanol	CH ₃ CHOHCH ₃	1	-2003
glucose	C ₆ H ₁₂ O ₆	S	-2816