

Victorian Certificate of Education 2011

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

	STUDEN'	T NUMBE	CR		 	 	Letter
Figures							
Words							

CHEMISTRY

Written examination 1

Wednesday 15 June 2011

Reading time: 11.45 am to 12.00 noon (15 minutes)
Writing time: 12.00 noon to 1.30 pm (1 hour 30 minutes)

QUESTION AND ANSWER BOOK

Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks
A	20	20	20
В	8	8	52
			Total 72

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers and one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 25 pages.
- A data book.
- Answer sheet for multiple-choice questions.

Instructions

- Write your **student number** in the space provided above on this page.
- Check that your **name** and **student number** as printed on your answer sheet for multiple-choice questions are correct, **and** sign your name in the space provided to verify this.
- All written responses must be in English.

At the end of the examination

- Place the answer sheet for multiple-choice questions inside the front cover of this book.
- You may keep the data book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2011

SECTION A – Multiple-choice questions

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** or that **best answers** the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Question 1

Which one of the following compounds is **least** soluble in water at room temperature?

- A. ethane
- B. ethanol
- C. ethylamine
- **D.** ethanoic acid

Question 2

The structure of the product that is formed from the addition reaction between but-2-ene and chlorine, Cl₂, is

A

В.

C.

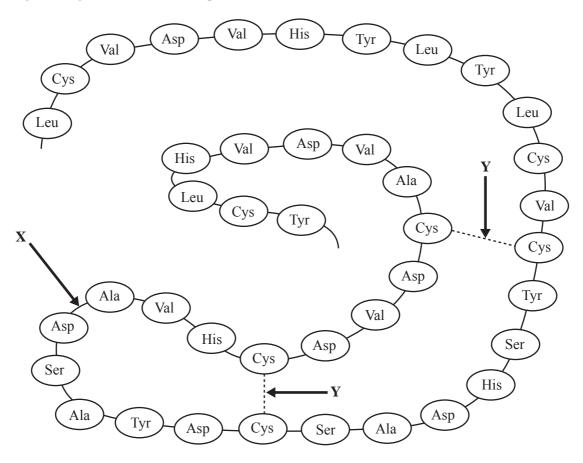
D.

Consider the following structures.

$$\begin{array}{c} CH_3 \\ H_3C-C-CH_2-CH-CH_3 \\ CH_3 \\ CH_3 \end{array}$$

Which of the above structures is that of 2,2,4-trimethylpentane?

- A. I and III only
- **B.** I and IV only
- C. II and III only
- **D.** II and IV only


Question 4

The compound that is **not** an isomer of 2,2,4-trimethylpentane is

- A. octane.
- **B.** 3-ethylhexane.
- **C.** 2,4-dimethylpentane.
- **D.** 2,4-dimethylhexane.

SECTION A – continued

The following is a diagram of a section of a protein chain.

The bonds represented by X and Y are

	X	Y
A.	amide bond	disulfide bond
В.	covalent bond	ionic bond
C.	hydrogen bond	peptide bond
D.	dipole-dipole bond	covalent bond

Question 6

Alanine, lysine and aspartic acid are amino acids.

Which of these will react with 1.0 M HCl(aq)?

- A. lysine only
- **B.** alanine and lysine only
- C. aspartic acid and lysine only
- D. alanine, aspartic acid and lysine

Halothane is a general anaesthetic. The following diagram represents the reaction pathway that produces halothane.

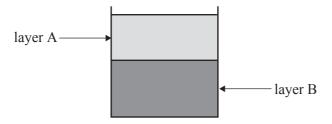
Which one of the following correctly identifies the type of reaction occurring in step 2 and correctly states the systematic name of molecule X?

	Type of reaction in step 2	Systematic name of molecule X
A.	substitution	1,2,2-trichloroethane
В.	addition	1,1,2-trichloroethane
C.	substitution	1,1,2-trichloroethene
D.	addition	1,2,2-trichloroethene

The pain killer ibuprofen lysine is **more** soluble in water than ibuprofen and can therefore be administered intravenously. Ibuprofen lysine is formed when ibuprofen and the amino acid, lysine, react with each other.

ibuprofen

lysine


The structure of the ibuprofen lysine is

A.
$$\begin{array}{c} CH_{3} & OH \\ CH_{3}-CH & CH_{3}-CH_{2} \\ CH_{3} & OH \\ CH_{4} & OH \\ CH_{4} & OH \\ CH_{4} & OH \\ CH_{5} & OH \\ CH_{5}$$

B.
$$CH_{3}$$
— CH_{2} — CH_{3}
 CH_{3} — CH_{2} — CH_{3}
 CH_{3} — CH_{2}
 CH_{3}
 CH_{3}

CH₃
$$CH_2$$
 CH_3 C

Canola oil is completely converted to biodiesel fuel. One of the components of this biodiesel is ethyl stearate. Once cooled, the product mixture of the conversion of canola oil to biodiesel separates into two layers. The top layer, layer A, in the diagram, is the biodiesel fuel.

The following chemicals are involved in the production of biodiesel.

- I glycerol
- II potassium hydroxide
- III ethanol

Which of the above chemicals are found in layer B?

- A. I and II only
- **B.** I and III only
- C. II and III only
- **D.** I, II and III

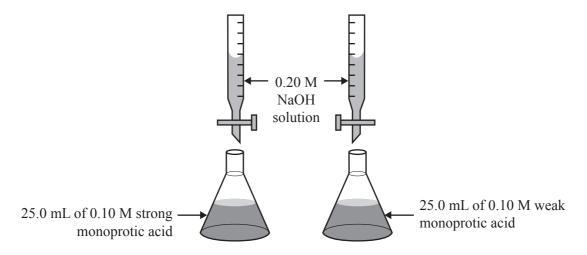
Question 10

Biogas can be generated as a by-product of many farming activities. Waste waters often contain sugars, such as glucose, which can be converted to methane. A simplified reaction sequence is given below.

Step 1	fermentation	$C_6H_{12}O_6(aq) \rightarrow 2CH_3CH_2OH(aq) + 2CO_2(g)$
--------	--------------	---

Step 2 oxidation
$$CH_3CH_2OH(aq) + O_2(aq) \rightarrow CH_3COOH(aq) + H_2O(1)$$

Step 3 neutralisation
$$2CH_3COOH(aq) + CaCO_3(s) \rightarrow Ca(CH_3COO)_2(aq) + CO_2(g) + H_2O(l)$$


Step 4 bacterial conversion
$$Ca(CH_3COO)_2(aq) + H_2O(1) \rightarrow 2CH_4(g) + CO_2(g) + CaCO_3(s)$$

The ratio of the volume of methane produced to volume of carbon dioxide produced in the overall process is

- **A.** 1:1
- **B.** 1:2
- **C.** 2:1
- **D.** 2:3

SECTION A – continued

Two titrations were performed as shown below.

Which one of the following statements is true?

- **A.** The weak acid will require a greater volume of NaOH solution than the strong acid to reach the equivalence point.
- **B.** The weak acid will require a smaller volume of NaOH solution than the strong acid to reach the equivalence point.
- C. The weak acid will require the same amount of NaOH solution as the strong acid to reach the equivalence point.
- **D.** The equivalence point in a titration of a weak monoprotic acid with NaOH solution cannot be determined.

Question 12

To each of three samples of a solution, a different acid-base indicator is added. The following colours are observed.

Indicator	Colour
thymol blue	yellow
methyl red	yellow
phenolphthalein	colourless

The pH of the solution is between

- **A.** pH = 2.8 and pH = 4.2
- **B.** pH = 4.2 and pH = 6.3
- **C.** pH = 6.3 and pH = 8.3
- **D.** pH = 8.3 and pH = 10.0

In an experiment, 172.1 g of gypsum, $CaSO_4.2H_2O$, $(M = 172.1 \text{ g mol}^{-1})$, was heated to constant mass in a large crucible. The **loss** in mass of the crucible and contents was 27.0 g.

The reaction that occurred when the gypsum was heated was

A.
$$CaSO_4.2H_2O(s) \rightarrow CaSO_4(s) + 2H_2O(g)$$

B.
$$2\text{CaSO}_4.2\text{H}_2\text{O(s)} \rightarrow 2\text{CaSO}_4.\frac{1}{2}\text{H}_2\text{O(s)} + 3\text{H}_2\text{O(g)}$$

C.
$$CaSO_4.2H_2O(s) \rightarrow CaSO_4.H_2O(s) + H_2O(g)$$

D.
$$2\text{CaSO}_4.2\text{H}_2\text{O}(s) \rightarrow 2\text{CaSO}_4.\frac{3}{2}\text{H}_2\text{O}(s) + \text{H}_2\text{O}(g)$$

Question 14

An analysis is carried out on a sample of unknown gas. The density of the gas is 2.86 grams per litre at STP. The molecular formula of the gas is

- A. HCl
- **B.** Cl₂
- \mathbf{C} . NO_2
- \mathbf{D} . SO_2

Question 15

Airbags are an important safety feature of today's cars. The airbag contains a mixture of solid sodium azide, NaN₃, and potassium nitrate, KNO₃. In the event of an accident, trip sensors send an electric signal to an igniter. The heat generated causes the reactants to decompose completely according to the following equation.

$$10\text{NaN}_3(s) + 2\text{KNO}_3(s) \rightarrow 5\text{Na}_2\text{O}(s) + \text{K}_2\text{O}(s) + 16\text{N}_2(g)$$

A particular car's airbag was found to inflate to a volume of 62.0 L at a pressure of 100 kPa when the temperature reached $36.6\,^{\circ}$ C. The molar mass of NaN₃ is $65.0\,\mathrm{g}$ mol⁻¹.

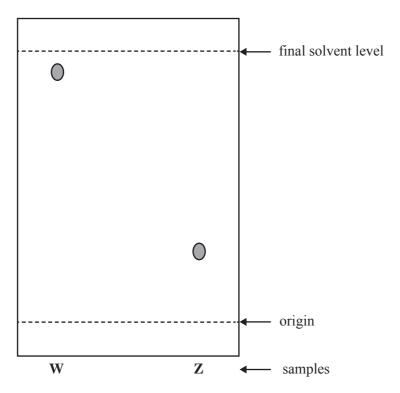
What was the mass of sodium azide contained in the car's airbag?

- **A.** 97.9 g
- **B.** 156.6 g
- **C.** 250.6 g
- **D.** 828.1 g

SECTION A – continued

2011 CHEM EXAM 1 10

Question 16


A starch molecule contains 500 glucose units.

If the molar mass of glucose is 180 g mol⁻¹, then the molar mass of the starch molecule is

- **A.** 8982 g mol^{-1}
- **B.** 81018 g mol^{-1}
- **C.** $90\,000 \text{ g mol}^{-1}$
- **D.** 98982 g mol^{-1}

Question 17

Two different food dye samples, W and Z, were compared using thin layer chromatography as shown below.

- **A.** Z is more strongly adsorbed than W and has a lower R_f value.
- **B.** Z is more strongly adsorbed than W and has a higher R_f value.
- **C.** W is more strongly adsorbed than Z and has a lower R_f value.
- ${f D}_{f \cdot}$ W is more strongly adsorbed than Z and has a higher R_f value.

Question 18

The IR wavenumber for bond stretching in a C-O bond $(1000 - 1300 \text{ cm}^{-1})$ is lower than for a C-H bond $(2850 - 3300 \text{ cm}^{-1})$. Which one of the following statements best explains this fact?

- **A.** Oxygen atoms are more electronegative than hydrogen atoms.
- **B.** Oxygen atoms have a greater atomic mass than hydrogen atoms.
- **C.** Oxygen atoms have a greater atomic radius than hydrogen atoms.
- **D.** Oxygen atoms have a higher nuclear charge than hydrogen atoms.

Petrol is a mixture of hydrocarbon molecules varying in size from six to ten carbon atoms. Forensic investigators suspect that traces of a substance found at a suspicious fire could be petrol that was used to start the fire.

Which one of the following techniques could best be used to identify the substance?

- **A.** NMR spectroscopy
- **B.** UV-visible spectroscopy
- C. atomic absorption spectroscopy
- **D.** gas chromatography followed by mass spectroscopy

Question 20

The amount of copper in a solution of copper (II) sulfate can be determined using atomic absorption spectroscopy. When a blue copper (II) sulfate solution is introduced into an atomic absorption spectrometer, a green flame is observed. Consider the following statements.

- I A copper (II) sulfate solution appears blue because it absorbs red light.
- II The metal species undergoes oxidation in the flame.
- III The flame is green due to electron transitions from a higher energy state to a lower energy state.

Which of the above statements are true?

- A. I only
- **B.** I and III only
- C. II and III only
- **D.** I, II and III

END OF SECTION A TURN OVER

SECTION B – Short answer questions

Instructions for Section B

Answer all questions in the spaces provided. Write using black or blue pen.

To obtain full marks for your responses you should

- give simplified answers with an appropriate number of significant figures to all numerical questions; unsimplified answers will not be given full marks.
- show all working in your answers to numerical questions. No credit will be given for an incorrect answer unless it is accompanied by details of the working.
- make sure chemical equations are balanced and that the formulas for individual substances include an indication of state; for example, H₂(g); NaCl(s)

Question 1

Below are the structures of a number of important molecules.

A.		В.	C.
		CH ₂ OH H OH HO OH H OH OH	HOCH ₂ OH H H
D.		Е.	F.
	C ₁₃ H ₂₇ -COO-H	H H-C-OH H-C-OH H-C-OH	C ₁₇ H ₃₁ -C O-CH ₃
G.		Н.	
	С ₁₇ H ₂₉ -С О-Н	CH ₂ OH CH ₂ O H H H H OH H	OH CH ₂ OH OH H OH OH OH H OH OH

SECTION B – Question 1 – continued

In each of the following questions, circle the letter or letters that correspond to the compounds in the table on the previous page.

The same letter may be used in more than one response.

a. Which molecule is used in the production of acetylsalicylic acid?

A B C D E F G H

1 mark

b. Which molecule is the product of a condensation polymerisation reaction?

A B C D E F G H

1 mark

c. Which **two** molecules are produced when a triglyceride containing no carbon-carbon double bonds undergoes hydrolysis?

A B C D E F G H

2 marks

d. Which molecule could be a **major** component in biodiesel?

A B C D E F G H

1 mark

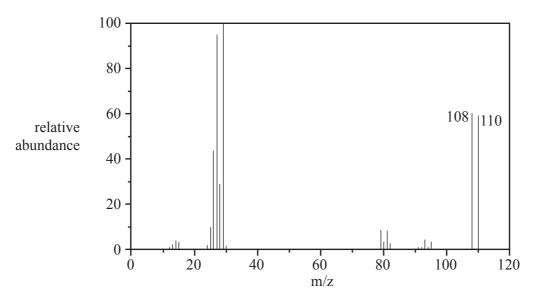
e. Which molecule is one of the components that react to form sucrose?

A B C D E F G H

1 mark

f. 0.001 mole of which molecule will react completely with 0.320 g of bromine?

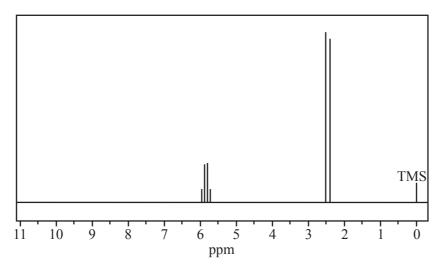
A B C D E F G H


1 mark

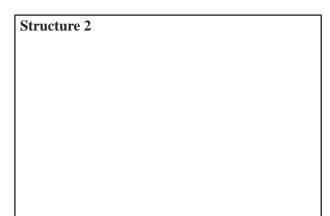
Total 7 marks

SECTION B – continued

a. Bromine exists as two isotopes, ⁷⁹Br and ⁸¹Br.


The mass spectrum of bromoethane, C₂H₅Br, with two molecular ion peaks at m/z 108 and 110, is shown below.

- i. Identify the species that produces the peak at m/z = 29.
- ii. What do the two molecular ion peaks indicate about the relative abundance of ⁷⁹Br and ⁸¹Br? Give a reason for your answer.


1 + 2 = 3 marks

b. There are two compounds that have the molecular formula $C_2H_4Br_2$. The ¹H NMR spectrum of **one** of these compounds is provided below.

i. In the boxes below, draw the structural formula of each of the two compounds that have the molecular formula $C_2H_4Br_2$.

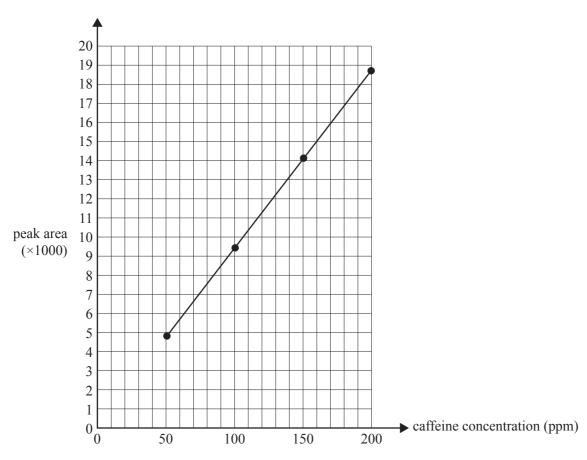
Structure 1		

ii. Circle the structure above that corresponds to the ¹H NMR spectrum provided.

Justify your selection by referring to both the ¹H NMR spectrum and to the structure of the compound.

2 + 3 = 5 marks

Total 8 marks

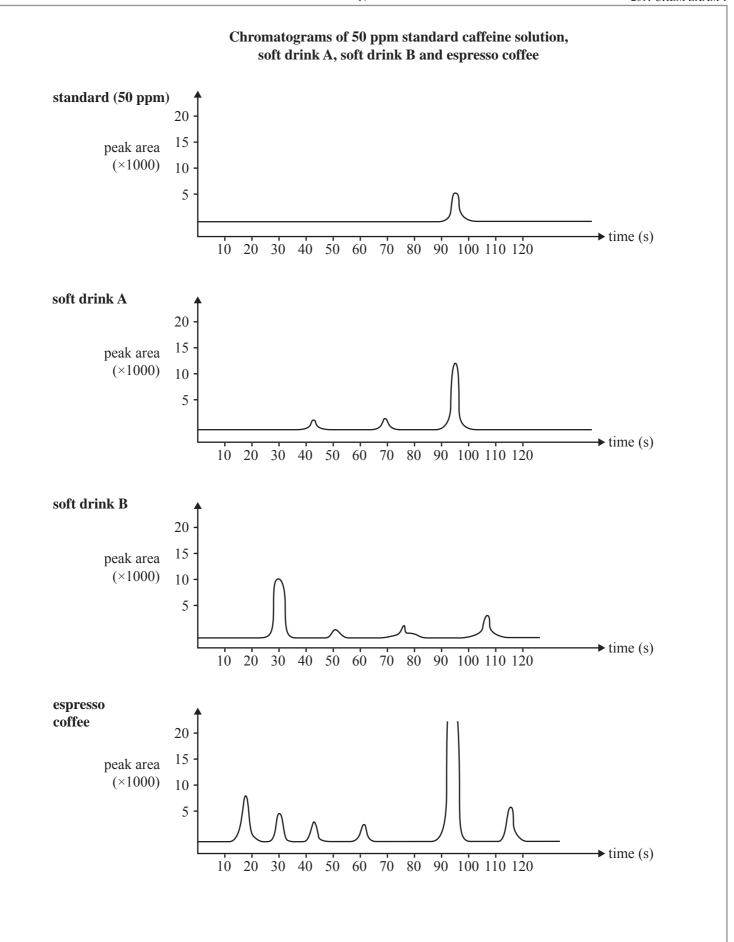

SECTION B – continued

Caffeine is a stimulant drug that is found in coffee, tea, energy drinks and some soft drinks.

The concentration of caffeine in drinks can be determined using HPLC.

Four caffeine standard solutions containing 50 ppm, 100 ppm, 150 ppm and 200 ppm were prepared. 25μ L of each sample was injected into the HPLC column. The peak areas were measured and used to construct the calibration graph below. The chromatograms of the standard solutions each produced a single peak at a retention time of 96 seconds.

Peak area of caffeine standard solutions: retention time = 96 seconds


 25μ L samples of various drinks thought to contain caffeine were then separately passed through the HPLC column. The results are summarised below.

Sample	Retention time of major peak (seconds)	Peak area of largest peak
Soft drink A	96	12 000
Soft drink B	32	8 500
Espresso coffee	96	211 000

a. Determine the caffeine content, in ppm, of soft drink A.

1 mark

SECTION B – Question 3 – continued

SECTION B – Question 3 – continued TURN OVER

2011 CHI	EM EXAM 1	18
b.	What evidence is presented in the chromatogram t any caffeine?	hat supports the conclusion that soft drink B does not contain

1 mark

c.	i.	Explain why the caffeine content of the espresso coffee sample cannot be reliably determined using th
		information provided.

ii.	Describe what could be done to the espresso coffee sample so that its caffeine content can be reliably determined
	using the information provided.

1 + 1 = 2 marks Total 4 marks

Phosphorus is an essential ingredient in plant fertiliser. The phosphorus content in fertiliser can be determined as a percentage, by mass, of P_2O_5 .

A 3.256 g sample of fertiliser is mixed with 40.0 mL of deionised water and the insoluble residue is then removed using vacuum filtration. 45.0 mL of $10\% \text{ MgSO}_4.7\text{H}_2\text{O}$ solution is added to the filtrate followed by 150.0 mL of 2 M NH_3 solution. A white precipitate forms. This precipitate is filtered and washed with three 5 mL portions of deionised water. The final mass of the precipitate, once thoroughly dried, was 4.141 g. The formula of the precipitate is known to be $\text{MgNH}_4\text{PO}_4.6\text{H}_2\text{O}$. Assume that the experiment was conducted at $25\,^{\circ}\text{C}$ and that all the phosphorus had been precipitated as $\text{MgNH}_4\text{PO}_4.6\text{H}_2\text{O}$.

	culate the percentage, by mass, of P_2O_5 in the fertiliser.
Mol	ar mass of $MgNH_4PO_4.6H_2O = 245.3 \text{ g mol}^{-1}$. Molar mass of $P_2O_5 = 142.0 \text{ g mol}^{-1}$.
	4 mark
	en MgNH ₄ PO ₄ .6H ₂ O is heated above 100 °C it is completely converted to MgNH ₄ PO ₄ according to the following ation.
	$MgNH_4PO_4.6H_2O(s) \rightarrow MgNH_4PO_4(s) + 6H_2O(g)$
prec	ald the calculated percentage by mass of P_2O_5 be higher, lower or the same as that determined in part a. if the cipitate collected had been deliberately heated above 100°C to completely convert the precipitate to MgNH ₄ PO are weighing? Explain your answer.

SECTION B – continued

Total 6 marks

Glass made with the mineral tellurite, TeO_2 (M = 159.6 g mol⁻¹), is often used to manufacture optical fibres.

The amount of tellurite in an ore sample can be determined by reaction with acidified dichromate. In this reaction TeO_2 is converted to H_2TeO_4 and $Cr_2O_7^{2-}$ is converted to Cr^{3+} .

a. The half equation for the reduction of the $Cr_2O_7^{2-}$ ion is

$$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(aq) + 7H_2O(1)$$

- i. Write a balanced half equation for the oxidation of TeO_2 .
- ii. Balance the chemical equation below by writing the coefficient of each chemical species in the spaces provided.

$$\underline{\hspace{1cm}} \text{TeO}_2(s) + \underline{\hspace{1cm}} \text{Cr}_2 \text{O}_7^{2-}(aq) + \underline{\hspace{1cm}} \text{H}^+(aq) \rightarrow \underline{\hspace{1cm}} \text{H}_2 \text{TeO}_4(aq) + \underline{\hspace{1cm}} \text{Cr}^{3+}(aq) + \underline{\hspace{1cm}} \text{H}_2 \text{O}(l)$$

1 + 1 = 2 marks

A 1.054 g ore sample containing tellurite is dissolved in acid. The resulting solution was then reacted with 50.00 mL of 0.03052 M potassium dichromate, $K_2Cr_2O_7$, solution to form telluric acid, H_2TeO_4 .

The amount of unreacted dichromate ions, $Cr_2O_7^{2-}$, in the above reaction, was then determined by titrating the solution with 0.0525 M iron (II) nitrate, $Fe(NO_3)_2$, solution. An average titre volume of 19.71 mL was required to reach the equivalence point. The equation for this reaction is

$$6Fe^{2+}(aq) + Cr_2O_7^{2-}(aq) + 14H^+(aq) \rightarrow 2Cr^{3+}(aq) + 6Fe^{3+}(aq) + 7H_2O(1)$$

b. i. Calculate the amount, in moles, of excess dichromate ion.

SECTION B – Question 5 – continued

4.0
S
_
0.00
ш
7
7
7
7
7
G AL
G AL
7
NG AL
ING AL
ING AL
TING AL
ING AL
ITING AL
ITING AL
RITING AL
RITING AL
RITING AL
RITING AL
ITING AL
RITING AL
WRITING AL
WRITING AL
WRITING AL

Calculate the r	nass of tellurite i	in the ore samp	ole.		
Calculate the r	nass of tellurite i	in the ore samp	ole.		
Calculate the r	nass of tellurite i	in the ore samp	ole.		
Calculate the r	nass of tellurite i	in the ore samp	ole.		

Total 8 marks

SECTION B – continued **TURN OVER**

i. The letters GATAC represent a part of the base sequence in one strand of DNA. In the boxes provided write the base sequence of the complementary strand of DNA.

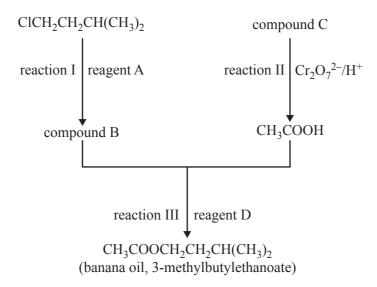
G	A	T	A	C

ii. Determine the number of hydrogen bonds between the base pairings in this section of DNA.

1 + 1 = 2 marks

Four different monomers known as nucleotides undergo condensation reactions to form a strand of DNA. The structure of one such nucleotide is shown below.

b. Name the reactants that have combined in condensation reactions to form this nucleotide.


Total 5 marks

Total 5 marks

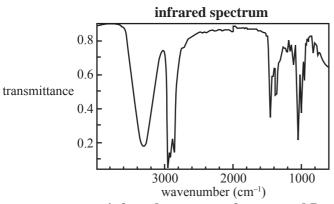
3 marks

Banana oil, 3-methylbutylethanoate, $CH_3COOCH_2CH_2CH(CH_3)_2$, is a sweet smelling liquid that gives bananas their characteristic odour.

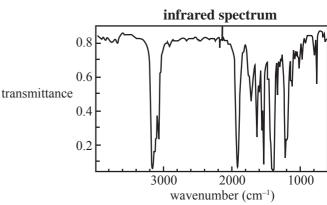
a. A chemist working for Go Bananas Pty Ltd has proposed the following reaction pathway for the synthesis of banana oil.

- i. Identify reagent A.
- ii. Compound B is an alcohol.Draw a structure of compound B.

- **iii.** Give the systematic name of compound B.
- iv. Give the systematic name of compound C.
- v. Identify reagent D.
- vi. Which reaction is an oxidation reaction? Circle the correct answer below.


reaction I reaction II reaction III

1 + 1 + 1 + 1 + 1 + 1 = 6 marks


SECTION B – Question 7 – continued

b.	The chemist decided to use fractional distillation to separate the final product from the reaction mixture. Describe
	the principles of fraction distillation.
	2 marks

The chemist compared the IR spectrum of the banana oil after distillation with the IR spectrum of a pure sample of compound B.

infrared spectrum of compound B

infrared spectrum of the banana oil obtained after distillation

The chemist claimed that these IR spectra indicate that a complete separation of the banana oil from the reaction mixture has been achieved.

c.	Explain how	the evidence	provided	by these	spectra	supports	the	chemist'	s clain
----	-------------	--------------	----------	----------	---------	----------	-----	----------	---------

2 marks
Total 10 marks

Bradykinin is a peptide that lowers blood pressure.

Diagram I shows the amino acid sequence of bradykinin.

$$Arg_Pro_Pro_Gly_Phe_Ser_Pro_Phe_Arg$$

diagram I

Diagram II shows the structure of a section of the bradykinin molecule.

diagram II

a. On diagram I, circle the section of bradykinin that is represented in diagram II.

1 mark

b. Peptides can be completely hydrolysed to their component amino acids by treatment with 6 M HCl. Identify the two functional groups that are formed as a result of the hydrolysis of the peptide link.

2 marks

c. Draw the chemical structure, showing all bonds, of the amino acid glycine as it would exist in solution at pH = 1.

1 mark

Total 4 marks

CHEMISTRY Written examination

Wednesday 15 June 2011

Reading time: 11.45 am to 12.00 noon (15 minutes)
Writing time: 12.00 noon to 1.30 pm (1 hour 30 minutes)

DATA BOOK

Directions to students

• A question and answer book is provided with this data book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Table of contents

		page
1.	Periodic table of the elements	3
2.	The electrochemical series	4
3.	Physical constants	5
4.	SI prefixes, their symbols and values	5
5.	¹ H NMR data	5–6
6.	¹³ C NMR data	7
7.	Infrared absorption data	7
8.	2-amino acids (α-amino acids)	8–9
9.	Formulas of some fatty acids	10
10.	Structural formulas of some important biomolecules	10
11.	Acid-base indicators	11
12.	Acidity constants, K_a , of some weak acids	11
13.	Values of molar enthalpy of combustion of some common fuels at 298 K and 101.3 kPa	11

1. Periodic table of the elements

2 He 4.0 Helium 10 Ne 20.1 Neon	18 Ar 39.9 Argon	36 Kr 83.8 Krypton	54 Xe 131.3 Xenon	86 Rn (222) Radon	118 Uuo
9 F 19.0 Fluorine	17 C1 35.5 Chlorine	35 Br 79.9 Bromine	53 1 126.9 Iodine	85 At (210) Astatine	
8 O 16.0 Oxygen	16 S 32.1 Sulfur	34 Se 79.0 Selenium	52 Te 127.6 Tellurium	84 Po (209) Polonium	116 Uuh
7 N 14.0 Nitrogen	15 P 31.0 Phosphorus	33 As 74.9 Arsenic	51 Sb 121.8 Antimony	83 Bi 209.0 Bismuth	
6 C 12.0 Carbon	14 Si 28.1 Silicon	32 Ge 72.6 Germanium	50 Sn 118.7 Tin	82 Pb 207.2 Lead	114 Uuq
5 B 10.8 Boron	13 Al 27.0 Aluminium	31 Ga 69.7 Gallium	49 In 114.8 Indium	81 T1 204.4 Thallium	
		30 Zn 65.4 Zinc	48 Cd 112.4 Cadmium	80 Hg 200.6 Mercury	112 Uub
symbol of element name of element		29 Cu 63.6 Copper	47 Ag 107.9 Silver	79 Au 197.0 Gold	110 111 Rg Ds Rg (271) (272) ium Darmstadtium Roentgenium
79 Au symb 197.0 Gold name		28 Ni 58.7 Nickel	46 Pd 106.4 Palladium	78 Pt 195.1 Platinum	110 Ds (271) Darmstadtium
		27 Co 58.9 Cobalt	45 Rh 102.9 Rhodium	77 Ir 192.2 Iridium	109 Mt (268) Meitnerium
atomic number relative atomic mass		26 Fe 55.9 Iron	44 Ru 101.1 Ruthenium	76 Os 190.2 Osmium	108 Hs (277) Hassium
		25 Mn 54.9 Manganese	43 Tc 98.1 Technetium	75 Re 186.2 Rhenium	107 Bh (264) Bohrium
		24 Cr 52.0 Chromium	42 Mo 95.9 Molybdenum	74 W W 183.8 Tungsten	106 Sg (266) Seaborgium
		23 V 50.9 Vanadium	41 Nb 92.9 Niobium	73 Ta 180.9 Tantalum	105 Db (262) Dubnium
		22 Ti 47.9 Titanium	40 Zr 91.2 Zirconium	72 Hf 178.5 Hafhium	104 Rf (261) Rutherfordium
		21 Sc 44.9 Scandium	39 Y 88.9 Yttrium	57 La 138.9 Lanthanum	89 Ac (227) Actinium
4 Be 9.0 Beryllium	12 Mg 24.3 Magnesium	20 Ca 40.1 Calcium	38 Sr 87.6 Strontium	56 Ba 137.3 Barium	88 Ra (226) Radium
1 H 1.0 Hydrogen 3 Li 6.9 Lithium	11 Na 23.0 Sodium	19 K 39.1 Potassium	37 Rb 85.5 Rubidium	55 Cs 132.9 Caesium	87 Fr (223) Francium

71	Lu	175.0	Lutetium		103	Γ r	(262)	Lawrencium
20	$\mathbf{A}\mathbf{P}$	173.0	Ytterbium		102	No	(259)	Nobelium
69	Tm	168.9	Thulium	•	101	Md	(258)	Mendelevium
89	Er	167.3	Erbium		100	Fm	(257)	Fermium
29					66	Es	(252)	Einsteinium
99	Dy	162.5	Dysprosium		86	Ç	(251)	Californium
9	Tb	158.9	Terbium		76	Bk	(247)	Berkelium
49	P.S	157.2	Gadolinium		96	Cm	(247)	Curium
63	Eu	152.0	Europium		95	Am	(243)	Americium
62	Sm	150.3	Samarium		94	Pu	(244)	Plutonium
61	Pm	(145)	Promethium		93	$^{ m d}_{ m N}$	(237.1)	Neptunium
09	PQ	144.2	Neodymium		92	Ω	238.0	Uranium
59	Pr	140.9	Praseodymium		91	Pa	231.0	Protactinium
58	Ce	140.1	Cerium		06	$\mathbf{T}\mathbf{h}$	232.0	Thorium

TURN OVER www.theallpapers.com

2. The electrochemical series

	E° in volt
$F_2(g) + 2e^- \iff 2F^-(aq)$	+2.87
$H_2O_2(aq) + 2H^+(aq) + 2e^- \implies 2H_2O(1)$	+1.77
$Au^+(aq) + e^- \rightleftharpoons Au(s)$	+1.68
$Cl_2(g) + 2e^- \Longrightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \iff 2H_2O(1)$	+1.23
$Br_2(1) + 2e^- \iff 2Br^-(aq)$	+1.09
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \Longrightarrow Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \Longrightarrow H_2O_2(aq)$	+0.68
$I_2(s) + 2e^- \iff 2I^-(aq)$	+0.54
$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^- \iff Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \iff \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$S(s) + 2H^{+}(aq) + 2e^{-} \iff H_2S(g)$	+0.14
$2H^+(aq) + 2e^- \rightleftharpoons H_2(g)$	0.00
$Pb^{2+}(aq) + 2e^{-} \Longrightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \iff \operatorname{Sn}(\operatorname{s})$	-0.14
$Ni^{2+}(aq) + 2e^- \Longrightarrow Ni(s)$	-0.23
$Co^{2+}(aq) + 2e^- \iff Co(s)$	-0.28
$Fe^{2+}(aq) + 2e^- \Longrightarrow Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^- \rightleftharpoons Zn(s)$	-0.76
$2H_2O(1) + 2e^- \Longrightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Mn^{2+}(aq) + 2e^- \Longrightarrow Mn(s)$	-1.03
$Al^{3+}(aq) + 3e^- \rightleftharpoons Al(s)$	-1.67
$Mg^{2+}(aq) + 2e^- \Longrightarrow Mg(s)$	-2.34
$Na^{+}(aq) + e^{-} \rightleftharpoons Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^- \rightleftharpoons Ca(s)$	-2.87
$K^+(aq) + e^- \rightleftharpoons K(s)$	-2.93
$Li^+(aq) + e^- \rightleftharpoons Li(s)$	-3.02

3. Physical constants

Avogadro's constant $(N_A) = 6.02 \times 10^{23} \text{ mol}^{-1}$

Charge on one electron $= -1.60 \times 10^{-19} \text{ C}$

Faraday constant (F) = 96 500 C mol⁻¹

Gas constant (R) = 8.31 J K⁻¹mol⁻¹

Ionic product for water ($K_{\rm w}$) = 1.00 × 10⁻¹⁴ mol² L⁻² at 298 K

(Self ionisation constant)

Molar volume (V_m) of an ideal gas at 273 K, 101.3 kPa (STP) = 22.4 L mol⁻¹

Molar volume (V_m) of an ideal gas at 298 K, 101.3 kPa (SLC) = 24.5 L mol⁻¹

Specific heat capacity (c) of water = $4.18 \text{ J g}^{-1} \text{ K}^{-1}$

Density (d) of water at 25° C = 1.00 g mL^{-1}

1 atm = 101.3 kPa = 760 mm Hg

 $0^{\circ}C = 273 \text{ K}$

4. SI prefixes, their symbols and values

SI prefix	Symbol	Value
giga	G	109
mega	M	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10 ⁻¹²

5. ¹H NMR data

Typical proton shift values relative to TMS = 0

These can differ slightly in different solvents. Where more than one proton environment is shown in the formula, the shift refers to the ones in bold letters.

Type of proton	Chemical shift (ppm)
R-CH ₃	0.9
R-CH ₂ -R	1.3
$RCH = CH - CH_3$	1.7
R ₃ -CH	2.0
CH_3 — C OR OR CH_3 — C NHR	2.0

Type of proton	Chemical shift (ppm)
R CH ₃	
C	2.1
O	
$R-CH_2-X$ (X = F, Cl, Br or I)	3–4
R-C H ₂ -OH	3.6
// ^O	
R—C	3.2
NHC H ₂R	
R — O — CH_3 or R — O — CH_2R	3.3
$ \begin{array}{c} O \\ \parallel \\ C - C + CH_3 \end{array} $	2.3
R — C OCH_2R	4.1
R-O-H	1–6 (varies considerably under different conditions)
R-NH ₂	1–5
$RHC = C\mathbf{H}_2$	4.6–6.0
ОН	7.0
Н	7.3
$R - C$ N H CH_2R	8.1
R—C H	9–10
R—С О—Н	11.5

6. ¹³C NMR data

Type of carbon	Chemical shift (ppm)
R-CH ₃	8–25
R-CH ₂ -R	20–45
R ₃ -CH	40–60
R ₄ –C	36–45
R-CH ₂ -X	15–80
R ₃ C-NH ₂	35–70
R-CH ₂ -OH	50–90
RC≡CR	75–95
$R_2C=CR_2$	110–150
RCOOH	160–185

7. Infrared absorption data

Characteristic range for infrared absorption

Bond	Wave number (cm ⁻¹)
C-Cl	700–800
C–C	750–1100
C-O	1000-1300
C=C	1610–1680
C=O	1670–1750
O–H (acids)	2500–3300
С–Н	2850–3300
O–H (alcohols)	3200–3550
N–H (primary amines)	3350–3500

8. 2-amino acids (α-amino acids)

Name	Symbol	Structure
alanine	Ala	CH ₃
		H ₂ N—CH—COOH
arginine	Arg	NH
		CH_2 — CH_2 — NH — C — NH_2
		H ₂ N—CH—COOH
asparagine	Asn	O
		$\begin{array}{c} \text{O} \\ \parallel \\ \text{CH}_2 & \text{C} & \text{NH}_2 \\ \parallel \\ \text{H}_2 \text{N} & \text{CH} & \text{COOH} \end{array}$
		H ₂ N—CH—COOH
aspartic acid	Asp	CH ₂ —COOH
		CH_2 — $COOH$ H_2N — CH — $COOH$
cysteine	Cys	CH ₂ —SH
		H ₂ N—CH—COOH
glutamine	Gln	O
		CH_2 CH_2 CH_2 NH_2
		H ₂ N—CH—COOH
glutamic acid	Glu	СН ₂ ——СН ₂ ——СООН
		H ₂ N—CH—COOH
glycine	Gly	H ₂ N—CH ₂ —COOH
histidine	His	N
		CH ₂ —N
		H_2N —CH—COOH
isoleucine	Ile	CH_3 CH CH_2 CH_3
		$\begin{array}{c} \operatorname{CH}_{3} \longrightarrow \operatorname{CH} \longrightarrow \operatorname{CH}_{2} \longrightarrow \operatorname{CH}_{3} \\ \\ \\ \operatorname{H}_{2}\operatorname{N} \longrightarrow \operatorname{CH} \longrightarrow \operatorname{COOH} \end{array}$

Name	Symbol	Structure
leucine	Leu	CH_3 — CH — CH_3
		CH_2
		H ₂ N—CH—COOH
lysine	Lys	$\begin{array}{c} \operatorname{CH}_2 & \operatorname{CH}_2 & \operatorname{CH}_2 & \operatorname{CH}_2 \end{array}$
		$\begin{array}{c} \operatorname{CH}_2 & \operatorname{CH}_2 & \operatorname{CH}_2 & \operatorname{CH}_2 \\ \\ \\ \operatorname{H}_2 \operatorname{N} & \operatorname{CH} & \operatorname{COOH} \end{array}$
methionine	Met	CH ₂ —— CH ₂ —— S —— CH ₃
		$\begin{array}{c} \operatorname{CH}_2 & \operatorname{CH}_2 & \operatorname{S} & \operatorname{CH}_3 \\ \\ \\ \operatorname{H}_2 \operatorname{N} & \operatorname{CH} & \operatorname{COOH} \end{array}$
phenylalanine	Phe	ÇH ₂ ——
		H_2N —CH—COOH
proline	Pro	СООН
		H N
serine	Ser	CH ₂ — OH H ₂ N—CH—COOH
		H ₂ N—ĊH—COOH
threonine	Thr	CH ₃ —— OH
		H ₂ N—CH—COOH
tryptophan	Trp	H N
		CH2
		H ₂ N—CH—COOH
tyrosine	Tyr	OH OH
		CH_2 OH H_2N CH $COOH$
1.	77.1	
valine	Val	CH_3 — CH — CH_3
		H ₂ N—ĊH—COOH

9. Formulas of some fatty acids

Name	Formula
Lauric	$C_{11}H_{23}COOH$
Myristic	$C_{13}H_{27}COOH$
Palmitic	$C_{15}H_{31}COOH$
Palmitoleic	$C_{15}H_{29}COOH$
Stearic	$C_{17}H_{35}COOH$
Oleic	$C_{17}H_{33}COOH$
Linoleic	$C_{17}H_{31}COOH$
Linolenic	$C_{17}H_{29}COOH$
Arachidic	$C_{19}H_{39}COOH$
Arachidonic	$C_{19}H_{31}COOH$

10. Structural formulas of some important biomolecules

deoxyribose

glycerol

11. Acid-base indicators

Name	pH range	Colour change		K _a
		Acid	Base	
Thymol blue	1.2–2.8	red	yellow	2×10^{-2}
Methyl orange	3.1–4.4	red	yellow	2×10^{-4}
Bromophenol blue	3.0-4.6	yellow	blue	6×10^{-5}
Methyl red	4.2–6.3	red	yellow	8×10^{-6}
Bromothymol blue	6.0–7.6	yellow	blue	1×10^{-7}
Phenol red	6.8–8.4	yellow	red	1×10^{-8}
Phenolphthalein	8.3–10.0	colourless	red	5×10^{-10}

12. Acidity constants, $K_{\rm a}$, of some weak acids at 25 °C

Name	Formula	K _a
Ammonium ion	NH ₄ ⁺	5.6×10^{-10}
Benzoic	C ₆ H ₅ COOH	6.4×10^{-5}
Boric	H_3BO_3	5.8×10^{-10}
Ethanoic	CH ₃ COOH	1.7×10^{-5}
Hydrocyanic	HCN	6.3×10^{-10}
Hydrofluoric	HF	7.6×10^{-4}
Hypobromous	HOBr	2.4×10^{-9}
Hypochlorous	HOCl	2.9×10^{-8}
Lactic	HC ₃ H ₅ O ₃	1.4×10^{-4}
Methanoic	НСООН	1.8×10^{-4}
Nitrous	HNO ₂	7.2×10^{-4}
Propanoic	C ₂ H ₅ COOH	1.3×10^{-5}

13. Values of molar enthalpy of combustion of some common fuels at 298 K and 101.3 kPa

Substance	Formula	State	$\Delta H_{\rm c}$ (kJ mol ⁻¹)
hydrogen	H_2	g	-286
carbon (graphite)	С	S	-394
methane	CH ₄	g	-889
ethane	C_2H_6	g	-1557
propane	C ₃ H ₈	g	-2217
butane	C_4H_{10}	g	-2874
pentane	C ₅ H ₁₂	1	-3509
hexane	C ₆ H ₁₄	1	-4158
octane	C ₈ H ₁₈	1	-5464
ethene	C_2H_4	g	-1409
methanol	CH ₃ OH	1	-725
ethanol	C ₂ H ₅ OH	1	-1364
1-propanol	CH ₃ CH ₂ CH ₂ OH	1	-2016
2-propanol	CH ₃ CHOHCH ₃	1	-2003
glucose	$C_6H_{12}O_6$	S	-2816

