PHYSICS PAP<u>ER-I</u>

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010 PHYSICS, PAPER-I

Roll Number

		· ·	
TIME ALLOWED:	(PART-I)	30 MINUTES	MAXIMUM MARKS:20
	(PART-II)	2 HOURS & 30 MINUTES	MAXIMUM MARKS:80

NOTE: (i) First attempt PART-I (MCQ) on separate Answer Sheet which shall be taken back after 30 minutes.

- (ii) Overwriting/cutting of the options/answers will not be given credit.
- (iii) Use of Scientific Calculator is allowed.

	<u>PART – I (M</u> (COMPULSO							
Q.1.	Select the best option/answer and fill in the app	ropri	ate box on the An	swer S	Sheet. (20)			
(i)	If A= 6i-8j, then 4A has the magnitude:	-			` ,			
()	(a) 40 (b) 10	(c)	20	(d)	None of these			
(ii)	Let $A = 2i+6j-3k$ and $B = 4i+2j+k$ then A.B equals:			. ,				
` /	(a) 8i+12j-3k (b) 17	(c)	23	(d)	None of these			
(iii)	If V is an operator, then V.V means:	` ′		` ′				
. ,	(a) Gradient of a Scalar field	(b)	Curl of a vector	field				
	(c) Divergence of a Vector field	(d)	None of these					
(iv)	The volume of a parallelepiped bounded by V	ectors	s A,B and C can be obtained from the					
	expression:							
	(a) (A x B).C (b) (A.B)x C	(c)	$(A \times B) \times C$	(d)	None of these			
(v)	A force acting on a particle is conservative if:							
	(a) It obeys Newton's third law	(b)	It obeys Newton	's seco	ond law			
	(c) It works equals the change in Kinetic energy		None of these					
(vi)	A torque applied to a rigid object always tends to j							
	(a) A rotational acceleration	(b)	A linear accelera	ation				
	(c) Precision	(d)	None of these					
(vii)	When the velocity of a body is constant, its acceleration	ration						
	(a) Maximum (b) Zero	(c)	Infinity	(d)	None of these			
(viii)	In the absence of external torque the total angular							
	(a) Constant (b) Zero	(c)	infinity	(d)	None of these			
(ix)	The rate of change of Momentum of the particle is		_					
	(a) Energy (b) Force	(c)	Impulse	(d)	None of these			
(x)	Constructive and destructive superposition of wav							
	(a) Polarisation (b) Interference	(c)	Diffraction	(d)	None of these			
(xi)	The intensity of a wave is proportional to the squa							
	(a) Amplitude (b) Time	(c)	Intensity	(d)	None of these			
(xii)	The colours in soap bubbles, oil slick etc. in a thin							
	(a) Diffraction (b) Polaristaion	(c)	Interference	(d)	None of these			
(xiii)	For higher resolution, in a diffraction grating, one			0 1:				
	(a) Large number of ruling	(b)	Small number of ruling					
	(c) No rulings at all	(d)	None of these					
(xiv)	To produce interference, the sources must be:		G 1	(1)				
, ,	(a) Intense (b) Incoherent	(c)	Coherent	(d)	None of these			
(xv)	Interference fringes are of:	()	** * 1.1 * 1.1	(1)	27 0.4			
	(a) Unequal width (b) Equal width	(c)	Variable width	(d)	None of these			
(xvi)	A Carnot Cycle is:	1	1 11 / 1		1. 1. 1			
		bounded by two isotherms and two adiabatics						
,	(c) any four sided process on a P-V graph (d) None of these							
(xvii)								
	(a) The temperature of the system remains const	ant						
	(b) The temperature of the system must change							
	(c) The internal energy of the system remains co							
	(d) None of these							

			PER-I									
(xv	iii)		not Cycle hea	_		etween 227°			s efficier			
(xi	v)	· /	44% s pipe carryin		20% ome times	hursts in wi	(c) nter h	79% ecause:		(a)	None of the	se
(AI	Λ)		Water expand		onic times	oursts iii wi		Ice expan	ds when	melts	S	
		(c) 1	Metal contrac	ets more th			(d)	None of t	hese			
(xx	()		renheit therm			thermomete			e reading	-	N. C.1	
		(a) 2	200°	(b)	-40°		(c)	100°		(d)	None of the	se
						PART –	<u>II</u>					
NOT	ΓЕ:	(i) (ii) (iii)	Attempt ON	NLY FOU npt of any	R question		RT-II	. All quest			UAL marks. will not be	
		(iv)	Use of Scie		ulator is al	llowed.						
~ ^									1 ~ 11	****	.1 1: .	
Q.2.	(a)		e a Scalar fiel r field is Vect		an express	ion for the C	radie	nt of a Sca	lar field.	Why	the gradient	of a (11)
	(b)		$\Phi(x,y,z)=x^2y$		rad Φ at (1	,2,1).						(05)
			hat values of				=4i-2j	-2k are per	pendicul	ar.		(04)
Ω3	(a)	Dictin	iguish betwee	n Lincor	and Angula	ar Mamantus	m Ev	nlain tha l	ow of Co	ncorr	ation of Ana	ulor
Q.J.	(a)		entum. Prove									(14)
	(b)	The ar	ngular mome	ntum J of	a particle i	is given as J	$=8t^4i$	$-2t^2j + 12$	2t ³ k,		4	()
		Find tl	the torque τ at	t t = 1								(06)
0.4	(a)	Discus	ss in detail th	e relativit	v of mass	time and ler	noth					(05)
~···			is time dilation				15111.					(11)
	(c)		we say that a		moving fra	ame runs slo	wer th	nan a clock	in a stat	ionar	y frame.	
		What	does it mean	?								(04)
O.5.	(a)	Differ	rentiate betwe	en Stream	nline and to	urbulent mot	tion of	f a liquid.				(03)
		What	is "Coefficien	nt of visco	sity"? Exp	olain in detai	1 the S	Stoke's law	applical	ole in	determining	
	(-)		efficient of v						6 E i		1 1 1	(14)
	(c)	wny c	do automanuf te	acturers re	ecommend	i using differ	rent v	iscosities o	or Engine	011 1r	i cold and no	t (03)
		Cililiat										(00)
Q.6.	(a)		is Polarizatio				by ref	lection and	l obtain l	Brews	ster Law.	
	(b)		explain the ide rish to use a Q				10000	r Eind tha	nolorisis		ala and anala	(13)
	(0)		raction.	uartz snec	ει (II-1.34)	in an as po	iaiize	i. Pilla tile	polarizii	ig alig	gie and angle	(05)
	(c)		can't we polar	rize sound	waves?							(02)
0.7	(-)	D - C	- T4 1 1	04-4-	11-	in Pinat and	TL:1	1	1			(1.1)
Ų./.			e Internal ene is a heat engi									(14)
	(0)		ers 2000 J of v			incidity of		.5 11 16 6			or mout und	(06)
				•	-							
Q.8.			notes on AN	Y TWO:								(20)
			entre of Mass iffraction Gra	ting and R	Resolving I	Power						
			oduction of lo									
