FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2012

Roll Number

STATISTICS

TIME A	LLOWE	D: (PART-I MCQs)	30 MINUTES	MAXIMUM MARKS: 20						
THREE	HOURS	(PART-II)	2 HOURS & 30 MINUTES	MAXIMUM MARKS: 80						
NOTE:	(i) Ca	Candidate must write Q.No. in the Answer Book in accordance with Q.No. in the Q.Paper .								
	(ii) At	Attempt ONLY Five questions from PART-II . All questions carry EQUAL marks.								
	(iii) E	Extra attempt of any question or any part of the attempted question will not be considered.								
	(iv) U	se of Scientific calculato	r is allowed.							

PART-II

Q.2. A candy company distribute boxes of chocolates with a mixture of creams, toffees and nuts coated in both light and dark chocolate. For a randomly selected box, let X and Y, respectively, be the proportion of the light and dark chocolates that are creams and suppose that the joint density function is:

f(x,y) = 2/3 (2x + 3y), $0 \le x \le 1, \quad 0 \le y \le 1 \text{ and } 0 \text{ e.w.}$

- (a) Verify that join integration with respect to x and y is one. (05)
- (b) Let 'A' is defined as the region $\{(x,y) \mid 0 \le x \le 1/2, 0 \le y \le 1/4\}$. Find $P[(X,Y) \mathcal{E} A]$ (06)
- (c) Fin g(x) and h(y) (05)
- Q.3. (a) In how many ways can 8 people be lined up get on bus? (04)
 - (b) If three specific persons insist on following each other? (04)
 - (c) If two specific person refuse to follow each other? (04)
 - (d) If 4 persons are male and 4 are females, in how many ways they can line up? (04)
- **Q.4.** Determine if the use of z-test or t-test is appropriate, giving reason, for the following hypothesis. Also find the critical region for the test.
 - (a) n=19, σ is unknown and the population distribution is normal, left tail test α =0.05 (04)
 - (b) n=11, σ is known and the population distribution is normal, right tail test α =0.01 (04)
 - (c) n=56, σ is unknown, two tail test α =0.10 (04)
 - (d) n=12, σ is unknown and the population distribution is normal, left tail test α =0.05 (04)
- Q.5. (a) Show that the sample mean \overline{X} of random sample of size 'n' from a distribution having p.d.f. $f(x;\theta)=(1/\theta) e^{-(x/\theta)}$, $0 < x < \infty$, $0 < \theta < \infty$, zero elsewhere, is unbiased estimator of θ^2/n .
 - (b) Let $X_1, X_2,...,X_n$ be a random sample from a Bernoulli distribution. Find the maximum likelihood estimator of probability of success.
- **Q.6.** (a) For the following 2x2 table compute Chi-square value for test of independence: (10)

A *1 A	Attribute B							
Attribute A	+	-						
+	n ₊₊	n _{+ -}						
-	n_+	n						

STATISTICS

(b) A die is tossed 180 times with the following results:

X	1	2	3	4	5	6
f	28	36	36	30	27	23

Is this a balanced die? Use 0.05 level of significance.

- Q.7. (a) Describe and explain the "Principal of Least Square". Also obtain the least square (08) estimates of slope and y-intercept of simple linear regression model.
 - (b) The following are 15 readings of traffic volume (X cars/ hour) and carbon monoxide concentration (PPM) taken at a metropolitan air quality sampling sight:

X	100	110	125	150	175	190	200	225	250	275	300	325	350	375	400
Y	8.8	9.5	10	10.5	10.5	10.5	10.6	11	12.1	12.1	12.5	13	13.2	14	14.5

Fit a linear Regression model of Y on X. Also plot error vs X.

(08)

(06)

- **Q.8.** (a) Describe the situation where one way ANOVA can be applied. Also state the relevant (06) hypotheses.
 - (b) Researchers wish to know if the two populations differ with respect to the mean value of total serum complement activity (C_{H50}). Samples of size n_1 =10 and n_2 =20 are taken from diseased and normal subjects. The sample means and standard deviations are:

$$\bar{x}_1 = 62.6$$

$$s_1 = 33.8$$

$$\bar{x}_2 = 47.2$$

$$s_2 = 10.1$$

Using appropriate test give your opinion on what the researchers wish.

Q.9. Writer short notes on any FOUR of the following:

(4 X 4=16)

- (i) Difference between simple and partial correlation.
- (ii) Multiple regression
- (iii) Use of statistics in electoral politics.
- (iv) Test for equality two variance
- (v) Joint probability distribution.
- (vi) Mathematical expectation.
