FEDERAL PUBLIC SERVICE COMMISSION

RECRUITMENT TO POSTS IN BS-17
UNDER THE FEDERAL GOVERNMENT, 2011

COMPETITIVE EXAMINATION FOR Roll Number

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: THREE HOURS

MAXIMUM MARKS: 100

NOTE: (i)  Attempt FIVE questions in all by selecting THREE questions from SECTION — A and TWO
questions from SECTION — B. All questions carry equal marks.
(i) Use of Scientific Calculator is allowed.

(iii) Extra attempt of any question or any part of the attempted question will not be considered.
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SECTION -A

Prove that every non-empty set of real numbers that has an upper bound also has an supremum

in R.
If x eR, set of real numbers, then there exists n € N such that x < n.

Define continuity of a function at a point and also prove that if f and g be functions on A
to R, where Ac R then f + g and f g are continuous at C.

If f:1 > Risdifferentiable at C e I, then f is continuous at C.

dx
Yx-2
Q) Define Complete metric space.

(i) Prove that a sequence of real numbers is convergent iff it is a Cauchy sequence. This
theorem is not in metric space, for justification give one example.

Let (x, d) be a matric space and A a subset of X. Then prove that

5
Evaluate j
1

Q) Interior A" of A is an open subset of X.

(i) A’is the largest subset of X contained in A.
State and prove Mean value theorem.

If Zan converges absolutely then Zan converges.
Find the area enclosed by the parabola y* +16x —71=0 and the line 4x+y+7=0
SECTION-B

Let Z =(cosé + i Sin@). Then prove that Z" =Cosn@ i Sinng forall n.

J3+i

Expand f(x) = x*, 0 <x < 27 ina Fourier series if period is 2 7 .
If f(z) is analytic inside a circle C with centre at a, then for all Z inside C

.\ 6
Using De Moivre’s Theorem evaluate [\/§_ I] :

f(z)= f(a)+ f'(a)(z—a)+ f Z(Ia)(z—a)2 + ...
Evaluate the integral by using Cauchy integral Formula
(4—32)dz . . - 3
—————— whereCisacircle |z| = .
gz(z—l)(z—Z) ’ ’ A
2z
Prove that | dé on

0 1—2pCosf — p? T1- p?’
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