FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2011

Roll Number

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: THREE HOURS MAXIMUM MAR			
NOTE: (i) (ii) (iii)		 Attempt FIVE questions in all by selecting THREE questions from SECTION – A and TWO questions from SECTION – B. All questions carry equal marks. Use of Scientific Calculator is allowed. Extra attempt of any question or any part of the attempted question will not be considered. 	
		<u>SECTION - A</u>	
Q.1.	(a)	Prove that every non-empty set of real numbers that has an upper bound also has an supremum (in R.	10)
	(b)	If $x \in R$, set of real numbers, then there exists $\mathbf{n} \in \mathbf{N}$ such that $\mathbf{x} < \mathbf{n}$. (2)	10)
Q.2.	(a)	Define continuity of a function at a point and also prove that if \mathbf{f} and \mathbf{g} be functions on \mathbf{A} (2) to \mathbf{R} , where $\mathbf{A} \subseteq \mathbf{R}$ then $\mathbf{f} + \mathbf{g}$ and f g are continuous at \mathbf{C} .	10)
	(b)	If $\mathbf{f}: \mathbf{I} \to \mathbf{R}$ is differentiable at $\mathbf{C} \in \mathbf{I}$, then f is continuous at \mathbf{C} . (2)	10)
Q.3.	(a)	Evaluate $\int_{1}^{5} \frac{dx}{\sqrt[3]{x-2}}.$	08)
	(b)	(i) Define Complete metric space. (6)	04)
		(ii) Prove that a sequence of real numbers is convergent iff it is a Cauchy sequence. This theorem is not in metric space, for justification give one example.	08)
Q.4.	(a)	Let (x , d) be a matric space and A a subset of X . Then prove that	
		(i) Interior A° of A is an open subset of X . (i)	05)
		(ii) A° is the largest subset of X contained in A .	05)
	(b)	State and prove Mean value theorem. (1	10)
Q.5.	(a)	If $\sum a_n$ converges absolutely then $\sum a_n$ converges. (1)	10)
	(b)	Find the area enclosed by the parabola $y^2 + 16x - 71 = 0$ and the line $4x + y + 7 = 0$	10)
		<u>SECTION – B</u>	
Q.6.	(a)	Let $Z = (\cos\theta + i \sin\theta)$. Then prove that $Z^n = \cos n\theta \ i \sin n\theta$ for all n . (1)	10)
	(b)	Using De Moivre's Theorem evaluate $\left(\frac{\sqrt{3}-i}{\sqrt{3}+i}\right)^6$. (1)	10)
Q.7.	(a)	Expand $\mathbf{f}(\mathbf{x}) = \mathbf{x}^2$, $0 < \mathbf{x} < 2\pi$ in a Fourier series if period is 2π .	10)
	(b)	If $f(z)$ is analytic inside a circle C with centre at a, then for all Z inside C (1)	10)
		$f(z) = f(a) + f'(a)(z-a) + \frac{f''(a)}{2!}(z-a)^2 + \dots$	
Q.8.	(a)	Evaluate the integral by using Cauchy integral Formula (1	10)
		$\int_{c} \frac{(4-3z)dz}{z(z-1)(z-2)} \text{where C is a circle } z = \frac{3}{2}.$	
	(b)	Prove that $\int_{0}^{2\pi} \frac{d\theta}{1 - 2p\cos\theta - p^2} = \frac{2\pi}{1 - p^2}.$	10)
