PURE MATHEMATICS, PAPER-II

TIME ALLOWED: 3 HOURS

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

Roll Number

PURE MATHEMATICS, PAPER-II

MAXIMUM MARKS:100

<u>г</u>	(i) Attempt FIVE mentions in all has selecting at least THEFE (i)
NOTE:	(i) Attempt FIVE questions in all by selecting at least THREE questions from SECTION-A and TWO questions from SECTION-B. All questions carry EQUAL
	marks. (ii) Use of Scientific Calculator is allowed.
	$\underline{SECTION - A}$
Q.1. (a)	If <i>f</i> is continuous on [a,b] and if ∞ is of bounded variation on [a,b], then $f \in R(\infty)$ on [a, b] i.e. f
	is Riemann – integrable with respect to ∞ on [a,b] (10)
(b)	Let $\sum a_n$ be an absolutely convergent series having sum S. then every rearrangement of $\sum a_n$
	also converges absolutely & has sum S. (10)
0 2 (a)	For what +ve value of P, $\int_{0}^{1} \frac{dn}{(1-x)^{p}}$ is convergent? (10)
Q.2. (a)	For what we value of Γ , $\int_{0}^{p} (1-x)^{p}$ is convergent. (10)
(b)	Evaluate $\int_{1}^{5} \frac{dx}{\sqrt[3]{x-2}}$ (10)
	$\int_{1}^{3} \sqrt[3]{x-2}$
Q.3. (a)	Find the vertical and horizontal asymptotes of the graph of function:
	$f(x) = (2x+3)\sqrt{x^2 - 2x + 3} $ (10)
(b)	Let (i) $y = f(x) = \frac{(x+2)(x-1)}{(x-3)^2}$ (ii) $y=f(x) = \frac{(x-1)}{(x+3)(x-2)}$ (10)
	$(x-3)^2$
	(ii) $y=f(x) = \frac{(x-1)}{(x-2)(x-2)}$ (10)
	Examine what happens to y when $x \to -\infty$ & $x \to +\infty$
	Examine what happens to y when $x \rightarrow -\infty$ & $x \rightarrow +\infty$
Q.4. (a)	Find a power series about 0 that represent $\frac{x}{1-r^3}$ (6)
(b)	Let $\sum_{n} s$ be any series, Justify. (5+5+4)
	(i) if $\lim_{n \to \infty} \left \frac{Sn+1}{Sn} \right = r < 1$, then $\sum_{n=1}^{\infty} s_{n}$ is absolutely convergent.
	(ii) if $\lim_{n \to \infty} \left \frac{Sn+1}{Sn} \right = r$ and $(r > 1 \text{ or } r = \infty)$, then $\int_{n}^{\infty} diverges$.
	(iii) if $\lim_{n \to \infty} \left \frac{Sn+1}{Sn} \right = 1$, then we can draw no conclusion about the convergence or
	divergence.

PURE MATHEMATICS, PAPER-II

Q.5. (a) Show that
$$\int_{0}^{1112} Sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = \frac{\Gamma(m)\Gamma(n)}{2\Gamma(m+n)}; m, n > 0$$
 (10)

(b) Prove that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}; m,n,>0$$
 (10)

- Q.6. (a) Let A be a sequentially compact subset of a matrix space X. Prove that A is totally bounded. (10)
 - (b) Let A be compact subset of a metric space (X,d) and let B be a closed subset of X such that $A \cap B = \Phi$ show that d(A,B) > 0 (10)

<u>SECTION – B</u>

- **Q.7.** (a) Show that if tanZ is expanded into Laurent series about $Z = \frac{11}{2}$, then (10)
 - (i) Principal is $\frac{-1}{z \Pi/2}$
 - (ii) Series converges for $0 < |Z \frac{\Pi}{2}| < \frac{\Pi}{2}$

(b) Evaluate
$$\frac{1}{2\Pi i} \oint_C \frac{e^{z}}{z^2(z^2+2z+2)} dz$$
 around the circle with equation $|z|=3$. (10)

Q.8. (a) Expand
$$f(x) = x^2$$
; $0 < x < 2\Pi$ in a Fourier series if period is 2Π . (10)

(b) Show that
$$\int_{0}^{\infty} \frac{\cos x \, dx}{x^2 + 1} = \frac{\Pi}{a} e^{-x}; x \ge 0$$
 (10)

Q.9. (a) Let f(z) be analytic inside and on the simple close curve except at a pole of order m inside C. Prove that the residue of f(Z) at a is given

by
$$a_{-1} = \lim_{Z \to a} \frac{1}{(m-1)!} \frac{m^{-1}d}{dz^{m-1}} \{ (z-a)^m f(z) \}$$
 (10)

(b) If f(z) s analytic inside a circle C with center at a, then for all Z inside C.

$$f(z) = f(a) + f'(a)(z-a) + f''\frac{(a)}{2!}(z-a)^2 + f'''\frac{(a)}{3!}(z-a)^3 + \dots$$
(10)
