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FEDERAL PUBLIC SERVICE COMMISSION
       COMPETITIVE EXAMINATION FOR
RECRUITMENT TO POSTS IN BPS-17 UNDER 
       THE FEDERAL GOVERNMENT, 2010

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: 3 HOURS MAXIMUM MARKS:100

NOTE:

(i) Attempt FIVE questions in all by selecting at least THREE questions from 
SECTION–A and TWO questions from SECTION–B. All questions carry EQUAL
marks.

(ii) Use of Scientific Calculator is allowed.

SECTION – A

Q.1. (a) If f is continuous on [a,b] and if   is of bounded variation on [a,b], then f   R  on [a, b] i.e. f 
is Riemann – integrable with respect to on [a,b] (10)

(b) Let  na be an absolutely convergent series having sum S. then every rearrangement of  na

also converges absolutely & has sum S.   (10)

Q.2. (a) For what +ve value of P,  

1

0 )x1( p

dn
 is convergent?  (10)

(b) Evaluate   

5

1
3 2x

dx
  (10)

Q.3. (a) Find the vertical and horizontal asymptotes of the graph of function:

 32xf(x)  322  xx (10)

(b) Let (i) y = f(x)  = 
2)3(

)1)(2(




x

xx

(ii) y=f(x) =
 

)2x)(3(

1




x

x
(10)

Examine what happens to y when x   & x

Q.4. (a) Find a power series about 0 that represent 
31 x

x


(6)

(b) Let 
n
s  be any series, Justify.      (5+5+4)

(i)  if 
n

Lim
Sn

Sn 1
 = r < 1, then 

n
s  is absolutely convergent.

(ii) if 
n

Lim
Sn

Sn 1
 = r and (r > 1 or r= ), then 

n
S diverges.

(iii) if
n

Lim
Sn

Sn 1
=1, then we can draw no conclusion about the convergence or 

divergence.
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Q.5. (a) Show that 0,;
)(2

(n)(m)
dcos

12

0

1-2n12 






 nm
nm

Sin m  (10)

(b) Prove that 
   

0,,;
)(

),( 



 nm
nm

nm
nm (10)

Q.6. (a) Let A be a sequentially compact subset of a matrix space X. Prove that A is totally 
bounded. (10)

(b) Let A be compact subset of a metric space (X,d) and let B be a closed subset of X such 
that AB =   show that d(A,B)>0 (10)

SECTION – B

Q.7. (a) Show that if tanZ is expanded into Laurent series about Z = 
2


,  then (10)

(i) Principal is 
2

1




z

(ii) Series converges for 
2

|
2

|0





 Z

(b) Evaluate 
i2

1   C

zt

dz
zz

e

22z

        
22  around the circle with equation |z|=3. (10)

Q.8. (a) Expand f(x) = x2 ; 0<x<2  in a Fourier series if period is 2 . (10)

(b) Show that 0;
10

2










 xe
ax

Cosxdx x (10)

Q.9. (a) Let f(z) be analytic inside and on the simple close curve except at a pole of 
order m inside C. Prove that the residue of f(Z) at a is given

by  )}(){(  
)!1(

1
1

1

1 zfaz
dz

d

m
Lima m

m

m

aZ









 (10)

(b) If f(z) s analytic inside a circle C with center at a, then for all Z inside C.

....)(
!3

)(
)(

!2

)(
))(()()( 3///2///  az

a
faz

a
fazafafzf (10)
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Q.6.
(a)
Let A be a sequentially compact subset of a matrix space X. Prove that A is totally bounded.
(10)
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[image: image27.wmf]Ç


B = 

[image: image28.wmf]F


 show that d(A,B)>0
(10)

SECTION – B


Q.7.
(a)
Show that if tanZ is expanded into Laurent series about Z = 
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Q.8.
(a)
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[image: image35.wmf]P


 in a Fourier series if period is 2

[image: image36.wmf]P


.
(10)


(b)
Show that 

[image: image37.wmf]0


;


1


0


2


³


P


=


+


-


¥


ò


x


e


a


x


Cosxdx


x



(10)

Q.9.
(a)
Let f(z) be analytic inside and on the simple close curve except at a pole of 



order m inside C. Prove that the residue of f(Z) at a is given 
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(b)
If f(z) s analytic inside a circle C with center at a, then for all Z inside C.
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