

## FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

## **PURE MATHEMATICS, PAPER-I**

## TIME ALLOWED: 3 HOURS

MAXIMUM MARKS:100

|                     | (i) Attempt FIVE questions in all by selecting at least THREE questions from                                                                                                                                                                            |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTE:               | SECTION-A and TWO questions from SECTION-B. All questions carry EQUAL                                                                                                                                                                                   |
| noil.               | marks.<br>(ii) Use of Scientific Calculator is allowed.                                                                                                                                                                                                 |
| SECTION – A         |                                                                                                                                                                                                                                                         |
| <b>Q.1.</b> (a)     | Let W be a subspace of a finite dimensional vector space V, then W is finite dimensional and dim (w) $\leq$ dim (v). Also if dim (w) = dim (V), then V = W. (10)                                                                                        |
| (b)                 | Let V & W be vector space and let $T : V \rightarrow w$ be a linear if V is finite dimensional, then<br>nullity $(T) + \operatorname{rank} (T) = \dim v$ (10)                                                                                           |
| <b>Q.2.</b> (a)     | Show that there exist a homomorphism from $S_n$ onto the multiplication group $\{-1,1\}$ of 2 elements $(n \ge 1)$ . (7)                                                                                                                                |
| (b)                 | If H is the only subgroup of a given finite order in a group G. Prove that H is normal in G. (7)                                                                                                                                                        |
| (c)                 | Show that a field K has only two ideals (namely K & (o)). (6)                                                                                                                                                                                           |
| <b>Q.3.</b> (a)     | Find all possible jordan canonical forms for 3x3 matrix whose eigenvalues are -2,3,3(10)<br>$\begin{bmatrix} 1 & 3 & 0 \end{bmatrix}$                                                                                                                   |
| (b)                 | Show that matrix $\begin{bmatrix} 1 & 3 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ (10)                                                                                                                                                               |
|                     |                                                                                                                                                                                                                                                         |
|                     | is diagonalizable with minimum calculation                                                                                                                                                                                                              |
| Q.4. (a)<br>(b)     | Every group is isomorphic to permutation group (7)<br>Show that for $n \ge 3 Z(s_n) = I$ (6)                                                                                                                                                            |
| (c)                 | Let A, B be two ideal of a ring, then $\frac{A+B}{A} = \frac{B}{A \cap B}$ . (7)                                                                                                                                                                        |
| <b>Q.5.</b> (a)     | Verify Cayley – Hamilton theorem for the matrix (7)                                                                                                                                                                                                     |
|                     | $\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ 2 & -3 & 0 \\ 1 & 1 & 1 \end{bmatrix}$                                                                                                                                                                       |
|                     |                                                                                                                                                                                                                                                         |
|                     | Prove that ring $A = Z_1$ , the set of all integers is a principal ideal ring. (7)                                                                                                                                                                      |
| (c)                 | Under what condition on the scalar, do the vectors $(1,1,1)$ , $(1,\xi,\xi^2)$ , $(1,-\xi,\xi^2)$ (6) form basis of $c^3$ ?                                                                                                                             |
| <u>SECTION – B</u>  |                                                                                                                                                                                                                                                         |
| Q.6. (a)            | Show that $T.N. = 0$ for the helix (10)                                                                                                                                                                                                                 |
|                     | $R(t) = (a\cos wt) z + (a \sin wt) j + (bt) k$                                                                                                                                                                                                          |
| (b)                 | The vector equation of ellipse :r(t) = $(2 \cos t) \hat{i} + (3 \operatorname{Sint}) \hat{j}$ ; $(0 \le t \le 2\Pi)$                                                                                                                                    |
|                     | Find the eurvature of ellipse at the end points of major & minor axes. (10)                                                                                                                                                                             |
| <b>Q.7.</b> (a)     | Discuss & sketch the surface (12)<br>$x^2+4y^2=4x-4z^2$                                                                                                                                                                                                 |
| (b)                 | Show that an equation to the right circular cone with vertex at 0, axis oz & semi – vertical angle $\infty$ is $x^2+y^2=z^2 \tan^2 \infty$ (8)                                                                                                          |
| <b>Q.8.</b> (a) (b) | Show that hyperboloids of one sheet and hyperbolic parabolas are ruled surface. (6+6)<br>Find an equation of the plane which passes through the point $(3,4,5)$ has an x – intercept<br>equal to -5 and is perpendicular to the plane $2x+3y-z=8$ . (8) |

## \*\*\*\*\*