FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR
 RECRUITMENT TO POSTS IN BPS-17 UNDER
 THE FEDERAL GOVERNMENT, 2010

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: 3 HOURS

MAXIMUM MARKS:100

NOTE: SECTION-A and TWO questions from SECTION-B. All questions carry EQUAL marks.
 (ii) Use of Scientific Calculator is allowed.

(i) Attempt FIVE questions in all by selecting at least THREE questions from

SECTION - A

Q.1. (a) Let W be a subspace of a finite dimensional vector space V , then W is finite dimensional and $\operatorname{dim}(\mathrm{w}) \leq \operatorname{dim}(\mathrm{v})$. Also if $\operatorname{dim}(\mathrm{w})=\operatorname{dim}(\mathrm{V})$, then $\mathrm{V}=\mathrm{W}$.
(b) Let $\mathrm{V} \& \mathrm{~W}$ be vector space and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{w}$ be a linear if V is finite dimensional, then nullity $(\mathrm{T})+\operatorname{rank}(\mathrm{T})=\operatorname{dim} \mathrm{v}$
(10)
Q.2. (a) Show that there exist a homomorphism from S_{n} onto the multiplication group $\{-1,1\}$ of 2 elements ($\mathrm{n} \geq 1$).
(b) If H is the only subgroup of a given finite order in a group G . Prove that H is normal in G.
(c) Show that a field K has only two ideals (namely K \& (o)).
Q.3. (a) Find all possible jordan canonical forms for 3×3 matrix whose eiganvalues are $-2,3,3(\mathbf{1 0})$
(b) Show that matrix $\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]$
is diagonalizable with minimum calculation
Q.4. (a) Every group is isomorphic to permutation group
(b) Show that for $n \geq 3 \mathrm{Z}\left(\mathrm{s}_{\mathrm{n}}\right)=\mathrm{I}$
(c) Let A , B be two ideal of a ring, then $\frac{A+B}{A}=\frac{B}{A \cap B}$.
Q.5. (a) Verify Cayley - Hamilton theorem for the matrix

$$
\mathrm{A}=\left[\begin{array}{rrr}
0 & 1 & 2 \tag{7}\\
2 & -3 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

(b) Prove that ring $\mathrm{A}=\underset{1}{Z}$, the set of all integers is a principal ideal ring.
(c) Under what condition on the scalar, do the vectors $(1,1,1),\left(1, \xi, \xi^{2}\right),\left(1,-\xi, \xi^{2}\right)$ form basis of c^{3} ?

SECTION - B

Q.6. (a) Show that T.N. $=0$ for the helix
$\mathrm{R}(\mathrm{t})=(\mathrm{a} \cos \mathrm{wt}) \hat{z}+(\mathrm{a} \sin \mathrm{wt}) \hat{j}+(\mathrm{bt}) \hat{k}$
(b) The vector equation of ellipse $: \mathrm{r}(\mathrm{t})=(2 \cos \mathrm{t}) \hat{i}+(3 \operatorname{Sint}) \hat{j} ;(0 \leq t \leq 2 \Pi)$ Find the eurvature of ellipse at the end points of major \& minor axes.
Q.7. (a) Discuss \& sketch the surface
(b) Show that an equation to the right circular cone with vertex at 0 , axis oz \& semi vertical angle \propto is $x^{2}+y^{2}=z^{2} \tan ^{2} \propto$
Q.8. (a) Show that hyperboloids of one sheet and hyperbolic parabolas are ruled surface. (6+6)
(b) Find an equation of the plane which passes through the point $(3,4,5)$ has an x-intercept equal to -5 and is perpendicular to the plane $2 x+3 y-z=8$.

