FEDERAL PUBLIC SERVICE COMMISSION
COMPETITIVE EXAMINATION FOR

RECRUITMENT TO POSTS IN BPS-17 UNDER
THE FEDERAL GOVERNMENT, 2010

Roll Number

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: 3 HOURS MAXIMUM MARKS:100

(i) Attempt FIVE questions in all by selecting at least THREE questions from
SECTION-A and TWO questions from SECTION-B. All questions carry EQUAL

NOTE:
marks.
(i1) Use of Scientific Calculator is allowed.
SECTION — A
Q.1. (a) Let W be a subspace of a finite dimensional vector space V, then W is finite dimensional and
dim (w) <dim (v). Also if dim (w) = dim (V), then V= W. (10)
(b) LetV & W be vector space and let T : V = w be a linear if V is finite dimensional, then
nullity (T) + rank (T) = dim v 10)
Q.2. (a) Show that there exist a homomorphism from S, onto the multiplication group {-1,1} of
2 elements (n>1). @)
(b) If H is the only subgroup of a given finite order in a group G. Prove that H is normal in
G. @)
(c) Show that a field K has only two ideals (namely K & (0)). 6)
Q.3. (a) Find all possible jordan canonical forms for 3x3 matrix whose eiganvalues are -2,3,3(10)
1 3 0
(b) Show that matrix |0 2 1 10)
0o 1 1
is diagonalizable with minimum calculation
Q4. (a) Every group is isomorphic to permutation group @)
(b) Show that forn >3 Z (s,) =1 6)
(c) Let A, B be two ideal of a ring, then AtB__ B . ()]
A ANB
Q.5. (a) Verify Cayley — Hamilton theorem for the matrix @)
0 1 2
A=|2 -3 0
1 1 1
(b) Prove that ring A = % , the set of all integers is a principal ideal ring. @)
(¢) Under what condition on the scalar, do the vectors (1,1,1), (1,&,&7%), (1,-&,&7) 6)
form basis of ¢*?
SECTION - B
Q.6. (a) Show that T.N. =0 for the helix (10)
R(t) = (acos wt) z + (a sinwt) j + (bt) k
(b) The vector equation of ellipse :r(t) = (2 cos t) i + (3 Sint) j; (0<¢ < 2IT)
Find the eurvature of ellipse at the end points of major & minor axes. 10)
Q.7. (a) Discuss & sketch the surface 12)
)(2+4y2=4x—4z2
(b) Show that an equation to the right circular cone with vertex at 0, axis oz & semi —
vertical angle o is x*+y*=z" tan oc ®)
Q.8. (a) Show that hyperboloids of one sheet and hyperbolic parabolas are ruled surface. (6+6)
(b) Find an equation of the plane which passes through the point (3,4,5) has an x — intercept

equal to -5 and is perpendicular to the plane 2x+3y-z = 8. )]
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SECTION – A

Q.1.
(a)
Let W be a subspace of a finite dimensional vector space V, then W is finite dimensional and dim (w) 
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dim (v). Also if dim (w) = dim (V), then V = W.
(10)


(b)
Let V & W be vector space and let T : V ( w be a linear if V is finite dimensional, then




nullity (T) + rank (T) = dim v
(10)

Q.2.
(a)
Show that there exist a homomorphism from Sn onto the    multiplication group {-1,1} of 2 elements (n
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1).
(7)


(b)
If H is the only subgroup of a given finite order in a group G. Prove that H is normal in G.
(7)


(c)
Show that a field K has only two ideals (namely K & (o)).
(6)

Q.3.
(a)
Find all possible jordan canonical forms for 3x3 matrix whose eiganvalues are -2,3,3
(10)


(b) Show that matrix 

[image: image3.wmf]ú


ú


ú


û


ù


ê


ê


ê


ë


é


1


      


1


      


0


1


     


2


      


0


0


     


3


      


1



  (10)


is diagonalizable with minimum calculation


Q.4.
(a)
Every group is isomorphic to permutation group
(7)


(b)
Show that for n 
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3 Z (sn) = I
 (6)


(c)
Let A, B be two ideal of a ring, then 
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Q.5.
(a)  
Verify Cayley – Hamilton theorem for the matrix
 (7)
A=
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(b)
Prove that ring A = 
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Z


, the set of all integers is a principal ideal ring.
 (7)


(c)
Under what condition on the scalar, do the vectors (1,1,1),   (1,
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form basis of c3?

SECTION – B 


Q.6.
(a)
Show that T.N. = 0 for the helix 
 (10)



R(t) = (acos wt) 
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 + (a sinwt)
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(b)
The vector equation of ellipse :r(t) = (2 cos t) 
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Find the eurvature of ellipse at the end points of major & minor axes.   
(10)

Q.7.
(a)
Discuss & sketch the surface
 (12)



x2+4y2=4x-4z2 



(b)
Show that an equation to the right circular cone with vertex at 0, axis oz & semi – vertical angle 
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 is x2+y2=z2 tan2
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(8)

Q.8.
(a)
Show that hyperboloids of one sheet and hyperbolic parabolas are ruled surface.    (6+6)


(b)
Find an equation of the plane which passes through the point (3,4,5) has an x – intercept equal to -5 and is perpendicular to the plane   2x+3y-z = 8.
 (8)
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