

TIME ALLOWED: 3 HOURS

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

Roll Number

MAXIMUM MARKS:100

PURE MATHEMATICS, PAPER-I

NOTE:	(i) Attempt FIVE questions in all by selecting at least THREE questions from SECTION–A and TWO questions from SECTION–B . All questions carry EQUAL marks.
	(ii) Use of Scientific Calculator is allowed.
SECTION – A	
Q.1. (a)	Let W be a subspace of a finite dimensional vector space V, then W is finite dimensional an
(b)	$\dim(w) \le \dim(v)$. Also if $\dim(w) = \dim(V)$, then $V = W$. (10) Let V & W be vector space and let T : V \rightarrow w be a linear if V is finite dimensional, then nullity (T) + rank (T) = $\dim v$ (10)
Q.2. (a)	Show that there exist a homomorphism from S_n onto the multiplication group $\{-1,1\}$ of 2 elements $(n \ge 1)$.
(b)	If H is the only subgroup of a given finite order in a group G. Prove that H is normal in
()	G. (7)
(c)	Show that a field K has only two ideals (namely K & (o)). (6)
Q.3. (a)	Find all possible jordan canonical forms for $3x3$ matrix whose eigenvalues are $-2,3,3(10)$
(b)	Show that matrix $\begin{bmatrix} 1 & 3 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ (10)
	is diagonalizable with minimum calculation
Q.4. (a)	Every group is isomorphic to permutation group (7)
(b)	Show that for $n \ge 3 Z(s_n) = I$ (6)
(c)	Let A, B be two ideal of a ring, then $\frac{A+B}{A} = \frac{B}{A \cap B}$. (7)
Q.5. (a)	Verify Cayley – Hamilton theorem for the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & -3 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ (7)
(b)	Prove that ring $A = Z$, the set of all integers is a principal ideal ring. (7)
(c)	Under what condition on the scalar, do the vectors $(1,1,1)$, $(1,\xi,\xi^2)$, $(1,-\xi,\xi^2)$ form basis of c^3 ?
	SECTION – B
Q.6. (a)	Show that T.N. = 0 for the helix (10)
	$R(t) = (a\cos wt) \hat{z} + (a \sin wt) \hat{j} + (bt) \hat{k}$
(b)	The vector equation of ellipse :r(t) = $(2 \cos t) i + (3 \sin t) j$; $(0 \le t \le 2\Pi)$ Find the eurvature of ellipse at the end points of major & minor axes. (10)
Q.7. (a)	Discuss & sketch the surface $x^2+4y^2=4x-4z^2$ (12)
(b)	Show that an equation to the right circular cone with vertex at 0, axis oz & semi vertical angle \propto is $x^2+y^2=z^2$ tan ² \propto (8)
Q.8. (a) (b)	Show that hyperboloids of one sheet and hyperbolic parabolas are ruled surface. (6+6) Find an equation of the plane which passes through the point $(3,4,5)$ has an x – intercept equal to -5 and is perpendicular to the plane $2x+3y-z=8$. (8)
