FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2011

Roll	Number

COMPUTER SCIENCE

TIME ALLOWED:		(PART-I MCQs)	30 MINUTES	MAXIMUM MARKS: 20				
THREE HOU	URS	(PART-II)	2 HOURS & 30 MINUTES	MAXIMUM MARKS: 80				
NOTE: (i)	E: (i) First attempt PART-I (MCQs) on separate Answer Sheet which shall be taken back after 30							
	minutes.							
(ii)	Overwriting/cutting of the options/answers will not be given credit.							

(PART-I MCQs) (COMPULSORY)												
Q.1.	S	elect the best opti	on/an	swer and fill	in the	appr	opriate box	on the	Ans	wer Sheet.	(1	x 20=20)
(i)		tual memory is a sage devices, to be		•	-			-		uding main m	nemor	y and mass
	(a)	Overlapping	(b)	Extension		(c)	Managemen	ıt	(d)	Interface	(e)	None of these
(ii)		per threading tech nputational throug		ies deliver tv	wo pro	ocessin	ig threads pei	r physic	cal c	core for a total	l of	massive
	(a)	2	(b)	8		(c)	16		(d)	32	(e)	None of these
(iii)		unit is capable roprocessor.	of m	imicking the	proce	essor a	nd taking ove	er conti	rol o	of the system	bus ju	st like
	(a)	Control	(b)	DMA		(c)	I/O		(d)	PPI	(e)	None of these
(iv)	The	ascending order	of a d	ata Hierarch	y is:							
	(a)	Bit-byte-field-re	cord-	file-database	:	(b)	Bit-byte-rec	ord-fie	ld-fi	ile-database		
	(c)	Byte-bit-field-re	cord-	file-database	:	(d)	Byte-bit-rec	ord-fie	ld-fi	ile-database	(e)	None of these
(v)		interrupts are	initiat	ed by an I/O	drive							
	(a)	Internal	(b)	External		(c)	Software		(d)	Basic	(e)	None of these
(vi)		tware testing is a and in t			softw	are qu	ality assuran	ce and	repi	resents the ult	imate	view of,
	(a)	Code, design, sp	ecific	ation		(b)	Specification	n, desig	gn a	nd code gener	ration	
	(c)	Design, specific	ation,	code		(d)	Code genera	ation, s	peci	fication, desig	gn (e) None of these
(vii)	(vii) is an integration testing approach that is commonly used when shrinking wrapped software products are being developed.							vare products				
	(a)	Testing (b)	Smo	ke testing	(c)]	Portab	ility testing	(d)	Botl	n (b) and (c)	(e)	None of these
(viii)	(viii) Determine the result of attempting to compile and run the following code:											
	pub	lic class Tester {										
	pub	lic static void ma	in(Str	ing[] args){								
	Sys	tem.out.println(4	+''-	+2);								
		}										
	}											
	(a)	42	(b)	2		(c)	6		(d)	4	(e)	None of these
(ix)	The	class relationship	calle	ed generaliza	tion is	s the sa	ame as:					
	(a)	Inheritance	(b)	Aggregation	n	(c)	Association	(d	l) .	Abstraction	(e)	None of these

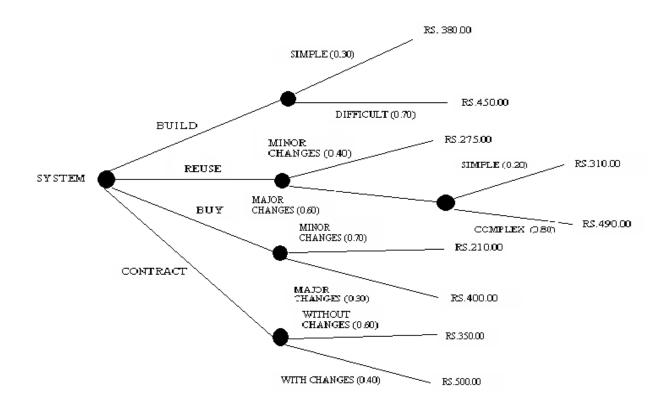
COMPUTER SCIENCE

(X)					allow a total of:	ystem n	as a total of s	ix partition	is. If one is	anoca	ated to	tile
	(a)	Five u	ser jobs			(b)	Six user jobs	S				
	(c)	Thirty	-two user	jobs		(d)	Thirty-six us	ser jobs	(e)	Sixt	y-four	user jobs
(xi)	A tr	ransacti	on require	ed to b	e ACID means it	should	be:					
	(a)	Acces	s, Control	l, Inte	gration and Deper	ndency	(b) Aton	nic, Consis	stency, Isola	ation	and Du	rability
	(c)	Acqui	re, consis	tency,	Inter-linked and	Depend	dency (d)	Both (a) a	and (b)	(e)	None	of these
(xii)		-			ction then the data sing the log can _			come to a	state where	e the c	latabas	e is
	(a)	Recov	er	(b)	Rollback	(c)	Lock	(d)	Append	(e)	None	of these
(xiii)	Wh	at is the	e major ro	le of t	he DDCMP?							
	(a)	DDC	MP does r	not ne	ed special hardwa	re to fi	nd the beginn	ing of a m	essage			
	(b)	DDC	MP has a	messa	ge header	(c)	DDCMP has	s an IP Ad	dress			
	(d)	DDC	MP does r	not use	e CRC	(e)	None of thes	se				
(xiv)	In a	synchi	onous mo	odem,	the receiving equ	alizer i	s known as	equal	izer.			
	(a)	Adapt	ive	(b)	Impairment	(c)	Statistical	(d)	Compron	nise	(e)	None of these
(xv)	The	maxin	num transi	fer spe	eed of 10 Base 5 i	s:						
	(a)	100 M	Ibps	(b)	2 Mbps	(c)	1 Gbps	(d)	10 Mbps	(e)	None	e of these
(xvi)	Wh	ich of t	he follow	ing is	a layer 2 device?							
	(a)	Bridge	e	(b)	Router	(c)	Repeater	(d)	Hub	(e)	None	of these
(xvii)	Ider	ntify the	e type of r	outing	g protocol that ma	intains	a topological	database	of the netwo	ork?		
	(a)	Topol	ogical Sta	ite		(b)	Shortest Pat	h First				
	(c)	Link S	State			(d)	Distance Ve	ctor (e)	None of t	hese		
xviii)					ormation unit at a known as:	given (OSI layer pote	entially car	n contain he	aders	, traile	rs and data
	(a)	Comp	ression	(b)	Buffer	(c)	Encapsulation	on (d)	Spooling	(e)	None	of these
(xix)	Ider	ntify the	e type of r	outing	g protocol that exc	changes	s entire routin	g tables at	regular into	ervals		
	(a)	Link S	State	(b)	Interior Gateway	y Proto	cols	(c)	Apple Ta	lk Ro	uting	
	(d)	Distar	ice Vector	r		(e)	None of thes	se				
(xx)	Wh	ich env	ironment	consi	ders memory, pro	cess an	d device and	file manag	ement from	a glo	bal vie	wpoint?
	(a)	Distri	buted Ope	erating	System	(b)	Network Op	erating Sy	stem			
	(c)	Multip	orogramm	ing O	perating System	(d)	All of these	(e)	None of t	hese		
						PAR	T-II					
NO	(i	i) A S ii) E	Attempt C ECTION Extra atten	ONLY I. All on t of	FOUR question questions carry lany question or a	s from EQUAI ny part	PART-II, se L marks.	lecting at				
0.2	(a)) E.	valoin tho	4.	SE	CTI	<u>ON – A</u>			(02	.02.0	1_05\

- (02T02T01=03)
- (i) In how many ways DMA process may be initiated and be terminated?
- (ii) The sequence of events as DMA is requested by an I/O devices.
- (iii) What happens when DMAC receives DMA request from another channel while it is serving one?

COMPUTER SCIENCE

- (b) Why Interrupts are employed in computer? Briefly describe basic types of Interrupts. (05)
- (c) Differentiate between pre-emptive and non pre-emptive scheduling. Briefly describe round robin and shortest scheduling policies with examples for each. (10)


A bunch of jobs is arriving in the Ready Queue as shown below using SRT and RR(Q=5). Calculate the average turn around time. Draw the Gantt chart and describe which policy provides better results?

JOB	A.T	E.R.T
1	0	10
2	1	06
3	2	12
4	3	11
5	4	5

- Q.3. (a) Consider a slotted ring of length 10 km with a data rate of 10 Mbps and 500 repeaters, each of which introduces a 1-bit delay. Each slot contains room for one source-address byte, one destination-address byte, two data bytes and five control bits for a total length of 37 bits. How many slots are on the ring? (09)
 - (b) Compare the capacity allocation schemes for IEEE 802.5 token ring and FDDI. What are the relative pros and cons? (05)
 - (c) Compare the individual fields of the IPv4 header with the IPv6 header. Account for the functionality provided by each IPv4 field by showing how the same functionality is provided in IPv6. (06)

<u>SECTION – B</u>

Q.4. (a) Calculate the software cost for building, reusing, buying and contracting a software system by considering the following decision tree diagram. What decision would you like to take for this kind of software system? (12)

COMPUTER SCIENCE

(i)

(iii)

(v)

VBscript

CGI

SOAP

(b) Software requirement analysis is unquestionably the communication intensive step in the software process. Why does the communication path frequently break down? (08)What is polymorphism? How can we achieve polymorphism in Java and what are its Q.5. (a) prerequisites? (08)**(b)** Write exception hierarchy in Java. Enlist the methods of Arithmetic exception, I/O Exception, Array Index Out of Bounds Exception Classes. Describe the use of Print Stack Trace Method. Consider STACK with memory size 8. Initially it Q.6. (a) is empty. Find out the output of the following algorithm: (09)step 1. Set X := 4 and y := 6step 2. Call PUSH(STACK, X+Y) step 3. Call PUSH(STACK, 5) step 4. Call PUSH(STACK, X+4) step 5. Call PUSH(STACK, Y-3) step 6. Call PUSH(STACK, Y-X) step 7. Repeat while TOP !=NULL Call POP(STACK, ITEM) Write: ITEM [loop ends] step 8. Exit **(b)** Elucidate the concept of Hashing. Explain in brief the various methods used to avoid collision in Hashing. (04)Insert Key Records: 76, 93, 40, 47, 10, 55 (in this sequence) into the Hash Table of length m = (c) 7 with the Hash Function $H(K) = K \mod m$. Perform linear and quadratic probing. (07)SECTION – C Write Short notes on the following: $(5 \times 4 = 20)$ (a) Block Structure of PL/SQL **(b) Database Security (c)** Cybertalk: A new way to communicate (d) The promise of virtual reality Q.8. (a) What is normalization process? Explain the steps to normalize a relation with suitable examples. Explain the DIFFERENCE between Client Side Technologies and the Server Side Technologies **(b)** with some examples. (06)(c) Define the following briefly: $(1 \times 5 = 5)$

Servlet

UDDI

(ii)

(iv)