FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17
 UNDER THE FEDERAL GOVERNMENT, 2011

Roll Number

APPLIED MATHEMATICS, PAPER-II
TIME ALLOWED: THREE HOURS
MAXIMUM MARKS: 100
NOTE: (i) Attempt FIVE questions in all by selecting THREE questions from SECTION - A and TWO questions from SECTION - B. All questions carry equal marks.
(ii) Use of Scientific Calculator is allowed.
(iii) Extra attempt of any question or any part of the attempted question will not be considered.

SECTION - A

Q.1. (a) Solve by method of variation of parameter

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \ln x \tag{10}
\end{equation*}
$$

(b) Solve first order non-linear differential equation

$$
\begin{equation*}
x \frac{d y}{d x}+y=y^{2} 1 n x \tag{10}
\end{equation*}
$$

Q.2. (a) Solve
(b) Solve

$$
\begin{align*}
& c^{2} u_{x x}=u_{t t} . \tag{10}\\
& u(0, t)=0 \\
& u(l, t)=0 \\
& u(x, 0)=\lambda \operatorname{Sin}\left(\frac{\pi}{l} x\right) \\
& u_{t}(x, 0)=0
\end{align*}
$$

$$
\begin{equation*}
x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=(x+y) z \tag{10}
\end{equation*}
$$

Q.3. (a) Work out the two dimensional metric tensor for the coordinates p and q given by

$$
\begin{equation*}
p=(x y)^{\frac{1}{3}}, q=\left(x^{2} / y\right)^{\frac{1}{3}} \tag{10}
\end{equation*}
$$

(b) Prove that $\quad \Gamma_{a b}^{d}=\frac{1}{2} g d c\left(g_{a c, b}+g_{b c, a}-g_{a b, c}\right)$

APPLIED MATHEMATICS, PAPER-II

Q.4. (a) Work out the Christoffel symbols for the following metric tensor
(10)

$$
g_{a b}=\left(\begin{array}{cc}
1 & 0 \\
0 & r^{2}
\end{array}\right)
$$

(b) Work out the covariant derivative of the tensor with components

$$
\left(\begin{array}{ccc}
r \cos \theta & a r \sin \varphi & a r \tag{10}\\
\sin \theta \sin \varphi & a \sin \theta \cos \varphi & a \\
\cos \varphi & a \sin \varphi & 0
\end{array}\right)
$$

Q.5. (a) Find recurrence relations and power series solution of $(x-3) y^{\prime}+2 y=0$
(b) Solve the Cauchy Euler's equation $x^{4} y^{\prime \prime \prime}+2 x^{3} y^{\prime \prime}-x^{2} y^{\prime}+x y=1$

SECTION - B

Q.6. (a) Find the positive solution of the following equation by Newton Raphson method

$$
\begin{equation*}
2 \sin x=x \tag{10}
\end{equation*}
$$

(b) Solve the following system by Jacobi method:

$$
\begin{align*}
10 x_{1}-8 x_{2} & =-6 \tag{10}\\
-8 x_{1}+10 x_{2}-x_{3} & =9 \\
-x_{2}+10 x_{3} & =28
\end{align*}
$$

Q.7. (a) Evaluate the following by using the trapezoidal rule.

$$
\begin{equation*}
\int_{0}^{1}(x+1) d x \tag{10}
\end{equation*}
$$

(b) Evaluate the following integral by using Simpson's rule

$$
\begin{equation*}
\int_{0}^{4} e^{x} d x \tag{10}
\end{equation*}
$$

Q.8. (a) Solve the following equation by regular falsi method:

$$
\begin{equation*}
2 x^{3}+x-2=0 \tag{10}
\end{equation*}
$$

(b) Calculate the Lagrange interpolating polynomial using the following table:

x	0	1	2
$f(x)$	1	0	-1

also calculate $f(0.5)$.

