## Cambridge International Examinations

## MAXIMUM MARK: 140

## Section 1

1 (a) new velocity labelled in correct direction
correct triangle completed
[3]
(b) (i) loss of PE $=560 \times 9.81 \times 25.0=137340(\mathrm{~J})$

KE at top $=\frac{1}{2} \times 560 \times 10^{2}=28000(\mathrm{~J})$
gain of $\mathrm{KE}=137340-40000=97340(\mathrm{~J})$
KE at bottom $=125340(\mathrm{~J})=\frac{1}{2} \times 560 \times v^{2}$
$v=\sqrt{\left(\frac{2 \times 125340}{560}\right)}=21.2\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
(ii) weight of carriage $=560 \times 9.81=5494(\mathrm{~N})$ (force 1 or 2)
$m \times a=m \times \frac{v^{2}}{r}=560 \times \frac{21.16^{2}}{18.0}=13930(\mathrm{~N})$
so upward force from track $=19420(\mathrm{~N})$ (force 2 or 1)
[Total: 11]

2 (a) (i) an oscillation in which frictional forces are zero (negligible)
[1]
(1)
(1) $[1]$
(b) (i) at the resonant frequency $\omega=2 \pi f=2 \pi \times 35.5=223 \mathrm{rad} \mathrm{s}^{-1}$
use of $A=0.0114$ in equation $E=\frac{1}{2} m A^{2} \omega^{2}$
$=\frac{1}{2} \times 0.046 \times 0.0114^{2} \times 223^{2}=0.149(\mathrm{~J})$
(ii) amplitude read correctly as 0.0041 m
giving energy as $\frac{1}{2} \times 0.046 \times 0.0041^{2} \times(40 \pi)^{2}=0.0061(\mathrm{~J})$
[Total: 8]

3 (a) (i) minimum work required = $m g h=50 \times 9.81 \times 400=196000$ ( J )
(ii) change in gravitational potential $=g h=9.81 \times(600-200)=3920$
(2) $[2]$
(iii) attempt to make lines cross contour lines at right angles (2]
subtract 1 mark for every two glaring discrepancies of this (to minimum zero)
(b) (i) attempt to make lines cross equipotentials at right angles arrows in the correct direction
(ii) 1. work done $=Q V$
$=50 \times 10^{-6} \mathrm{C} \times 400 \mathrm{~V}=0.020(\mathrm{~J})$
2. work done $=50 \times 10^{-6} \mathrm{C} \times-400 \mathrm{~V}=-0.020(\mathrm{~J})$
(1)
[3]
[Total: 10]

4

1. work done $=p \Delta V=5.7 \times 10^{6}(\mathrm{~Pa}) \times(3.1-2.0) \times 10^{-5}\left(\mathrm{~m}^{3}\right)$
$=62.7(\mathrm{~J})$
2. zero
(1) $[3]$
(ii) $\frac{P_{\mathrm{B}} V_{\mathrm{A}}}{T_{\mathrm{A}}}=\frac{P_{\mathrm{B}} V_{\mathrm{B}}}{T_{\mathrm{B}}}$
$T_{\mathrm{B}}=\frac{P_{\mathrm{B}} V_{\mathrm{B}} T_{\mathrm{A}}}{P_{\mathrm{A}} V_{\mathrm{A}}}=\frac{5.7 \times 10^{6} \times 2.0 \times 10^{-5} \times 300}{1.0 \times 10^{5} \times 36 \times 10^{-5}}$
$T_{\mathrm{B}}=950(\mathrm{~K})$
[3]
(b)

| stage of cycle | heat supplied to the gas / J | work done on the gas / J | increase in the internal energy of the system / J |
| :---: | :---: | :---: | :---: |
| $A \rightarrow B$ | 0 | 235 | 235 A |
| $B \rightarrow C$ | 246 | -63 C | $\begin{gathered} 183 \text { B } \\ \text { (sum of } 246 \text { and } \\ -63 \text { ) } \end{gathered}$ |
| $C \rightarrow D$ | 0 | -333 | -333 D |
| $\mathrm{D} \rightarrow \mathrm{A}$ | -85 E | 0 C | $\begin{aligned} 235 & +183-333 \\ & =-85 E \end{aligned}$ |

$$
\begin{equation*}
\mathbf{A}(1), \mathbf{B}(1), \mathbf{C C}(1), \mathbf{D}(1), \mathbf{E E}(1) \tag{5}
\end{equation*}
$$

(c) efficiency $=\frac{396-235}{246}=0.65$ or $65 \%$
accept $1-\frac{T_{1}}{T_{2}}=1-\frac{300}{950}=0.68$ or $68 \%$
[Total: 12]
(a) (i) $\begin{aligned} & \log (T / s)=\log \left(k / s m^{-n}\right)+n \log (r / m) \\ & g r a d i e n t=n \\ & y \text {-Intercept }=\log \left(k / \mathrm{sm}^{-n}\right) \text { accept } \log k\end{aligned}$
[3]
(ii) 5 points plotted correctly and straight trend line drawn
gradient calculated correctly
$n=1.5 \pm 0.1$
(1)
[3]
(iii) rearranges the equation to give $M=\frac{4 \pi^{2}}{\mathrm{k}^{2} \mathrm{G}}$ or $k=3.2 \times 10^{-8}$ (ignore units) by antilogging intercept
$M=5.65$ or $5.7 \times 10^{26}(\mathrm{~kg})$

6 (a) ${ }_{84}^{210} \mathrm{Po} \rightarrow{ }_{2}^{4} \alpha+{ }_{82}^{206} \mathrm{~Pb}$
${ }_{2}^{4} \alpha$
${ }_{82}^{206} \mathrm{~Pb}$
(b) (i) ratio $=(-) 1$
(ii) ratio $=\frac{m_{\mathrm{Pb}}}{m_{\alpha}}$

$$
\begin{equation*}
=\frac{206}{4}=51.5 \tag{1}
\end{equation*}
$$

(1) $[2]$
(iii) ratio $=\frac{m_{\alpha}}{m_{\mathrm{Pb}}} \times\left(\frac{v_{\alpha}}{v_{\mathrm{Pb}}}\right)^{2}$

$$
\begin{equation*}
=51.5 \tag{1}
\end{equation*}
$$

(c) $N=N_{0} \mathrm{e}^{-\lambda t}$

$$
\begin{align*}
& \ln \left(\frac{N}{N_{0}}\right)=-\lambda t  \tag{1}\\
& \ln \left(\frac{850}{24000}\right)=-3.3406=-\left(\frac{\ln 2}{138}\right) \times t  \tag{1}\\
& t=138 \times\left(\frac{3.3406}{\ln 2}\right)=665(\text { days })\left(=5.75 \times 10^{7} \mathrm{~s}\right) \tag{1}
\end{align*}
$$

[Total: 10]

7 (a) flux density as force per unit current in a wire of unit length flux as flux density $\times$ area
flux linkage as flux $\times$ number of turns
(b) $\quad(I=) \frac{(1.2 \times 0.22)}{\left(1.26 \times 10^{-6} \times 2000\right)}$

105 (A)
(c) (i) e.g. it might melt the coil, the wire would have to be too thick or not a long coil or diameter $\ll 0.22 \mathrm{~m}$
not it would be too expensive/it would be dangerous
(ii) e.g. use more turns/wire diameter greater
very low resistance/low resistivity/use low temperatures for superconductivity

8 (a) the result from the 2000 experiment and it has the smallest range of uncertainty (accept smallest uncertainty)
(b) (i) an error which results all values being higher or lower than expected
(ii) there might be systematic errors in this experiment
which would shift the result away from the true value without affecting the precision of the measurement
(iii) any two from
if different experiments are consistent
the result is more reliable
comparison of different results can reveal the presence of systematic errors if the range of results from two experiments overlap this is a good indication that the true value lies in the region of overlap
(iv) any two from
methods to measure $G$ involve measuring gravitational forces between masses
these forces are very small for laboratory sized objects gravitational forces are very weak (gravity is very weak) all masses have gravity so it is difficult/impossible to isolate the apparatus
[Total: 8]

9 (a) $\sin 0.0000255=\frac{1.50 \times 10^{11}}{x}$
$x=\frac{1.50 \times 10^{11}}{\sin 0.0000255}=3.37 \times 10^{17}(\mathrm{~m})$ accept use of tangent
(b) luminosity = luminous flux $\times$ area $=3.6 \times 10^{-9} \times 4 \pi r^{2}$
$=3.6 \times 10^{-9} \times 4 \pi\left(3.37 \times 10^{17}\right)^{2}=5.14 \times 10^{27}$

## Section 2

10 (a) (i) similarity: same mass
(ii) difference: opposite charge or opposite spin
(1) $[2]$
(b) (i) $\Delta E=c^{2} m$
$=\left(3.00 \times 10^{8}\right)^{2} \times 2 \times 9.11 \times 10^{-31}$
$=1.64 \times 10^{-13}(\mathrm{~J})$
correct substitution
(ii) $(f=) \frac{1}{2} \frac{\Delta \mathrm{E}}{\mathrm{h}}$
halve energy in (b)(i)
$=\frac{1}{2} \times\left(1.64 \times 10^{-13}\right) /\left(6.63 \times 10^{-34}\right)$
$=1.24 \times 10^{20}(\mathrm{~Hz})$
(1) $[2]$
(c) (i) there is a range of energies
energy per decay is constant or energy is conserved
(anti neutrino) particle has the remaining energy
(ii) $78=79+-1$ hence antineutrino must have zero proton number
(1) [1]
(d) e.g. $400=800 \mathrm{e}^{-\mu 8} \quad$ accept either $C=C_{0} \mathrm{e}^{-\mu x}$ or $I=I_{0} \mathrm{e}^{-\mu x}$
$\ln 2=8 \mu$
$\mu=0.0866 \mathrm{~mm}^{-1}$ or $86.6 \mathrm{~m}^{-1}$
$C_{0}=800\left(\mathrm{~s}^{-1}\right)$
consistent values for $x$ and $C$ from graph
$\mu=0.087$ or 87
$\mathrm{m}^{-1}$
(e) (i) $\lambda=\frac{h}{m v}$ giving expression for angular momentum, $m v r=\frac{n h}{2 \pi}$
(ii) angular momentum $=\frac{4 \times 6.63 \times 10^{-34}}{2} \times 3.142$ $=4.22 \times 10^{-34}(\mathrm{~J} \mathrm{~s})$
units must be same as those for $h$ i.e. J s
accept $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$
(iii) $\quad\left(E_{I}\right)=\frac{9.11 \times 10^{-31} \times\left(1.6 \times 10^{-19}\right)^{4}}{8 \times\left(8.85 \times 10^{-12}\right)^{2} \times\left(6.63 \times 10^{-34}\right)^{2}}=21.68 \times 10^{-19}(\mathrm{~J})$
correct values for symbols used
correct substitution
answer $2.2 \times 10^{-18}(\mathrm{~J})$
there is no credit for quoting 13.6 eV from memory or for simply converting this value to joules
[Total: 20]

11 (a) (i) (speed is constant but) direction is continuously changing (towards centre)
(velocity is changing) with time (so body accelerates)
a force is required (for acceleration towards centre)
(ii) $a=\frac{v^{2}}{r}$
(b) $R-m g=\frac{m v^{2}}{r}$ or $R=200+\frac{20 \times 4.7^{2}}{2.8}=200+161$

$$
\begin{equation*}
R=361(\mathrm{~N}) \tag{1}
\end{equation*}
$$

(c) (i) $\quad \mathrm{I}=\int\left(r^{2} \Delta m\right)=\int_{r}^{r_{1}} \rho 2 \pi r^{3} \mathrm{~d} r=\left[\frac{1}{2} \rho \pi R^{4}\right]=\frac{1}{2} M R^{2}$
mass of small ring $\mathrm{d} m=\rho 2 \pi r$. $\mathrm{d} r$
integral set up with limits from $r_{1}$ to $r_{2}\left(r_{1}=0, r_{2}=R\right)$
identifies and substitutes total mass of disc $M=\rho \pi R^{2}$
$I=\frac{1}{2} M R^{2}$
(ii) $10.1=44.8 \times \frac{(1.40-0)}{t}$
states or uses $T=1 \alpha$
$t=6.21$ (s)
(iii) $t=\frac{(118 \times 1.40)}{10.1}=16.4(\mathrm{~s})$
$\Delta t=16.4-6.2=10.2(\mathrm{~s})$ or their $2^{\text {nd }}$ time - their $1^{\text {st }}$ time (i)
allow $\Delta \mathrm{t}=10.45$ from use of $t=6 \mathrm{~s}$ (from (c)(iii))
(iv) 1. angular momentum is conserved

I increases so $\omega$ decreases $\omega$ decreases so $T$ increases
(v) 2. $T_{1}=\frac{2 \pi}{1.40}=4.49 \mathrm{~s} \quad T_{2}=4.49+0.66=5.15 \mathrm{so} \omega_{2}=1.22 \mathrm{rad} \mathrm{s}^{-1}$ $\mathrm{I}_{1} \omega_{1}=\mathrm{I}_{2} \omega_{2}$ $118 \times 1.40=I_{2} \times 1.22$ hence $I_{2}=135\left(\mathrm{~kg} \mathrm{~m}^{2}\right)$
calculation of new $T$ or new $\omega$
states or applies principle of conservation of angular momentum, using $\omega$ or $T$
(new moment of inertia $=$ ) $135\left(\mathrm{~kg} \mathrm{~m}^{2}\right)$
[Total: 20]

12 (a) resultant (force)
force (exerted on a body) is proportional to the rate of change in momentum
(b) $\frac{\mathrm{d} m}{\mathrm{~d} t}=\frac{F}{v}=\frac{34700 \times 10^{3}}{2.6 \times 10^{3}}$
$=13300\left(\mathrm{~kg} \mathrm{~s}^{-1}\right)$
[2]
(c) (i) working line shown and clear conversion of natural logs to exponentials
(ii) in table
$\left(\frac{m}{m_{0}}\right)=0.88$
$\Delta v_{\mathrm{r}}=7.7(4)$
[2]
(iii) 8 points correctly plotted (ecf their table values)
one mark lost for each error, minimum of zero best fit smooth curve drawn
(iv) with $V=2.6 \times 10^{3} ; \frac{m}{m_{0}}=0.15 \quad m=0.15 \times 2.04 \times 10^{6}=306000 \mathrm{~kg}$
with $V=8.0 \times 10^{3} ; \quad \frac{m}{m_{0}}=0.54 \quad m=0.54 \times 2.04 \times 10^{6}=1101600 \mathrm{~kg}$ difference in mass $=796000(\mathrm{~kg})$
(d) (i) $\mathrm{E}=-\frac{\left(G M_{\mathrm{E}} m_{\mathrm{S}}\right)}{(R+h)}$
(ii) the amount of work done on the mass
(in moving the mass) from infinity to the point (where the satellite is)
[2]
(iii) $\mathrm{KE}=0.5 \times 152 \times\left(7.7 \times 10^{3}\right)^{2}=4.5 \times 10^{9}$
$P E=$ total energy $-\mathrm{KE}=-4.5 \times 10^{9}-4.5 \times 10^{9}=-9.0 \times 10^{9}$
$-9.0 \times 10^{9}=-\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times 152}{r}$
$r=6.736 \times 10^{7}$
$h=6.736 \times 10^{7}-6.36 \times 10^{6}=3.76 \times 10^{5}(\mathrm{~m})$

13 (a) the laws of physics are the same for all inertial (uniformly moving) observers
(b) the speed of light is a constant for all inertial (uniformly moving) observers
(c) (i) At speeds close to the speed of light, the length of a moving object is less than its proper length for a stationary observer (owtte)
(d) (i) the speed of light in the laboratory is independent of the speed of the source
(ii) $c\left(\right.$ or $3.0 \times 10^{8} \mathrm{~ms}^{-1}$ ) accept 'the speed of light'
(iii) if a clock moves relative to an observer then its rate is slower than the rate of a clock at rest relative to the same observer (look for clarity of explanation and correct explanation)
note: partial answer scores one mark, e.g. time passes at different rates for differently moving observers or moving clocks run at different rates / run slow
(iv) $\lambda=\frac{1}{\sqrt{1-0.20^{2}}}=1.021$
half-life in laboratory reference frame $=1.021 \times 18 \mathrm{~ns}=18.4(\mathrm{~ns})$
[2]
(e) (i) $\frac{t^{\prime}}{t}=1+\frac{300^{2}}{2\left(3.0 \times 10^{8}\right)^{2}}=1+\left(5 \times 10^{-13}\right)$
or 1.0000000000005
award 1 mark for correct substitution rounded to 1 (no more than 12 zeros after decimal point)
(ii) 1. $\Delta t=5 \times 10^{-13} \times 50 \times 3600 \mathrm{~s}=90$ (ns)
2. decreases the time
(iii) any three from
calculation that a drift of 5 ns per hour is 250 ns total in 50 hours
(i.e. greater than expected time difference)
calculation that 100 ns gain/loss per day is about 200 ns in 50 hours
(again greater than expected time difference)
such large variations in clock rates must cast doubt on the conclusion
if changes in rate can be monitored they can be corrected for and so the results might be valid
if changes in rate occur unpredictably and have this magnitude then the conclusion is invalid
(f) red shift is increased/greater (than expected from simple Doppler shift formula) time dilation reduces the frequency of the light source relative to terrestrial source
(1)

14 (a) (i) classical explanation - intensity proportional to wave amplitude-squared or intensity is energy delivered per second per unit area of wave front quantum explanation - intensity proportional to the rate of arrival of photons or photons per second
(ii) classical explanation - continuous absorption of energy from wave quantum explanation - discrete absorption in quanta or photons
(b) Rutherford's planetary model - electrons can orbit at any radius or with a continuous range of energies...

Bohr's model - idea of discrete orbits or allowed radii or energy levels (quantised energy or angular momentum)
(c) idea of quantum jumps between discrete energy levels (from diagram)
electron jumps in correct direction (from lower to higher energy) as photon is absorbed (could be from diagram) discrete values of $\Delta E$ linked to discrete values of $f$ or $\lambda$ using $\Delta E=h f$
(max. 2 marks if no relevant diagram is used)
(d) (i) According to Newtonian mechanics: particles (e.g. electrons) always have a definite position and momentum
or uncertainty in position is not linked to uncertainty in momentum
basic explanation of the H.U.P., e.g. the more precisely the position of a particle is defined, the greater the uncertainty in its momentum (or vice versa).
or accept explanations based on wave mechanics - e.g. if electron wavelength is precisely defined (definite momentum) then the wave train must be infinitely long (infinite uncertainty in position)
explanation of incompleteness e.g. Einstein's view that quantum theory cannot describe the detailed properties of an electron so it is in some sense lacking
(ii) identifies aperture width as $\Delta x$
uses $\Delta p \geq \frac{h}{2 \pi \Delta x}$ to calculate $\Delta p=1.05 \times 10^{-24}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$ for electron
(iii) comparison with value of $p, 2.73 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$, to show significance (e.g. $\Delta p \approx 4 \% p$ or $\Delta p \approx 0.039 p$ )
so electrons are likely to be scattered through a significant angle or emerging electrons will be travelling in a range of directions.
(e) representation of photon by a wave function
(amplitude squared related to) probability of arrival on screen diffraction at slit leading to chance of arrival anywhere on screen random collapse of wave function leading to detection of photon

15 (a) $\Delta U=Q+W$ used correctly (at least $U$ and $W$ identified)
compression: work is done on the gas so its internal energy rises and its temperature goes up
expansion: work is done by the gas so its internal energy falls and its temperature goes down
(1) $[4]$
(b) (change of state - liquid to gas) bonds broken /latent heat absorbed work done by gas as it expands (increase in volume)
(c) heat flows from hot to cold and pipes are at a lower temperature than the inside of the refrigerator
(d) a measure of the number of ways
in which the energy can be distributed amongst the particles of the body
(e) if more energy is supplied there will be
more ways in which it can be distributed amongst the particles of the body (so the entropy increases)
or $\Delta S=\frac{\Delta Q}{T}$ used and used appropriately with terms defined
(f) zero
[1]
(g) (i) decrease
(ii) increase must have both (i) and (ii) correct for 1 mark
accept answers that refer to the entropy change of the refrigerator and environment in terms of $\Delta S_{\text {OUT }}=W+\frac{Q_{2}}{T_{\text {OUT }}}>\Delta S_{\text {IN }}=-\frac{Q_{1}}{T_{\text {IN }}}$ for 3 marks as long as terms are used correctly
(j) temperature of the room will increase
any two from
heat dumped > heat extracted
energy flows into the system
electrical energy input is transferred to heat in room
[Total: 20]

