MARK SCHEME for the May/June 2013 series

9792 PHYSICS

9792/02
Paper 2 (Part A Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	$\mathbf{9 7 9 2}$	$\mathbf{0 2}$

1 (a) (i) horizontal component at $\mathrm{A}=63 \cos 14=61.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
vertical component at $A=63 \sin 14=15.2\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
(ii) horizontal displacement $=61.1 \times 4.9=300(\mathrm{~m})$
accept 299 (m)
(iii) vertical displacement $=u t+1 / 2 \mathrm{at}^{2}=(15.2 \times 4.9)-\left(1 / 2 \times 9.81 \times 4.9^{2}\right)$
$=74.5-117.8=(-) 43.0$ to $43.3(\mathrm{~m})$
accept $44(\mathrm{~m})$, ignore sign
(iv) the angle of the slope $\tan \theta=43.3 / 300$
$\theta=8.2^{\circ}$
(b) (i)

at least 3 mm along original path and then new path under present curve
(ii) 1. path determined by movement of club or caused by same force in same direction or air resistance has acted for short time not if path stated to be different
2. (air resistance) reduces upward velocity/deceleration
allow WD against air resistance; not if height is greater
(air resistance) reduces forward velocity not if maximum height is later
3. forward/horizontal velocity (much) reduced not if angle smaller

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	$\mathbf{9 7 9 2}$	$\mathbf{0 2}$

2 (a) (i) $\mathrm{mgh}=6.0 \times 9.81 \times 1.64$
96.5(J)
kinetic energy $=96.5+134=231(\mathrm{~J})$
(ii) $1 / 2 m v^{2}=231$ so $^{2}=461 / 6$
$v=\sqrt{ }(460 / 6.0)=8.77\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
momentum $=8.77 \times 6=52.6(52.596)(\mathrm{Ns})$
(b) force $=$ momentum $/$ time $=$
$=52.6 / 0.013=4046(\mathrm{~N})$
accept 4050/4060
(c) (because of the small time) the force is very large constant impulse/change of momentum or greater rate of change of momentum
[Total: 10]

3 (a) (i) heat energy for raising temperature $=\mathrm{mc} \Delta \theta=65 \times 4200 \times 77$
$=2.10 \times 10^{7}(\mathrm{~J})$
heat energy for conversion to steam $=65 \times 2.26 \times 10^{6}=1.47 \times 10^{8}(\mathrm{~J})$
total heat required $=1.68 \times 10^{8}(\mathrm{~J})$
(ii) power $=1.68 \times 10^{8} /$ time
$=1.68 \times 10^{8} / 1200=140000(\mathrm{~W})$
(b) (i) power output $=$ force x speed
$=1800 \times 3.2=5760(\mathrm{~W})$
[2]
(ii) efficiency $=5760 / 140000=4.1$ (\%) or 0.041

NOT 0.041\%
[Total: 9]

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	02

4 (a) (i) electromotive force is the energy per unit charge (or power per unit current)
(converted from other forms of energy or power) into electrical energy (or power)
(1) $[2]$
(ii) resistance is potential difference per unit current
(1) [1]
(b) (i) 1. total resistance $=10 \mathrm{n}(\Omega)$
(1) [1]
2. resistances $10,20,30,40,50$ and 60Ω
plotted as straight line graph
(1) [2]

(ii) 1. resistance $=10 / \mathrm{n}(\Omega)$
2. resistances $=10,5,3.3,2.5,2.0$ and 1.7Ω
graph plotted correctly (for values stated)
(c) (i) 4 lines of $40(\Omega)$
total resistance $10(\Omega)$
(ii) (always) 10Ω
(1) [1]
(iii) smaller current through each resistor (1) so capable of handling more power output (1)
if one resistor faulty/inaccurate (1), total resistance close to 10Ω (1) (R unchanged $1 / 2$ only)
basic sensible suggestion (1); elaboration (1)
(2) [2]
[Total: 14]

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	02

5 (a) radio waves, microwaves and UV are transverse waves and ultrasound is a longitudinal wave (-1 e.e.o.o.)
(2) [2]
(b) a (transverse) wave in which all the oscillations take place in one plane ignore direction
diagram showing this (in contrast to a non-polarised wave)
(c) (i) amplitude $=A \cos 30=0.87 A$
ignore $\sqrt{ } 3 / 2$
(ii) 30° to the vertical
(iii) amplitude $=A \cos 30 \times \cos 30=0.75 A$
intensity \propto amplitude ${ }^{2}$
intensity $=I \times 0.75^{2}=0.56(25) I$
not A^{2}
penalise fractions only once

6 (a) (i) 132 to 135 mm
(ii) phase difference $=180$ degrees or π radians
(iii) actual value of $s=2 \times 25 \mathrm{~mm}=49$ to 51 mm
($D=132 \mathrm{~mm}, a=22 \mathrm{~mm}, s=8 \times 132 / 22=$) 48.4 mm
percentage difference $=(1.6$ in $50 \times 100=) 3.2 \%$
(iv) any two from:
the intensity of the wave from B will be less than that from A
B is further from X than A
the slit widths are not negligible (so situation is more complex than assumed)
small angle approximation has been made or $\sin \theta \approx \theta$
(b) the amplitude of one high frequency wave, the carrier, varies in a manner determined by the amplitude of another wave (the modulating wave, the signal)
constant period of carrier wave or period much less for carrier wave modulated amplitude
(c) lowest frequency $=200 \mathrm{~Hz}$
middle frequency $=3$ times lowest frequency (allow 4 times $/ 800 \mathrm{~Hz}$)

$$
\begin{equation*}
=600 \mathrm{~Hz} \tag{1}
\end{equation*}
$$

highest frequency $=11-14$ times lowest frequency

$$
\begin{equation*}
=2500 \pm 300 \mathrm{~Hz} \tag{1}
\end{equation*}
$$

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	02

7 (a) (i) $\mathrm{E}=\mathrm{hc} / \lambda$ (and knowing what the terms mean)

$$
\begin{align*}
& =6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 6.44 \times 10^{-7}=3.09 \times 10^{-19}(\mathrm{~J}) \tag{1}\\
& =3.09 \times 10^{-19} / \mathrm{e} \tag{2}\\
& =3.09 \times 10^{-19} / 1.60 \times 10^{-19}=1.93(\mathrm{eV}) \tag{1}
\end{align*}
$$

[2]
(ii) $\quad 7.87 \mathrm{~W} / 3.09 \times 10^{-19}(\mathrm{~J})$
$2.55 \times 10^{19}\left(\mathrm{~s}^{-1}\right)$
(b) (too) low energy photons/(too) long wavelength/(too) low frequency function in metals high/work function low/below threshold frequency

8 (a) (i) (total no. of atoms =) number of atoms of isotope/abundance ratio
or $1.82 \times 10^{22} / 0.00718$ or $1.82 \times 10^{22} / 0.0000718$ or $2.53(4818942) \times 10^{n}$
$2.53(4818942) \times 10^{24}$
(ii) $2.13 \times 10^{9} / 7.10 \times 10^{8}$ or 3 half-lives or 2^{3} or $1 / 2^{3}$ or $8 \times 1.82 \times 10^{22}$
$1.46(1.456) \times 10^{23}$
(iii) 0.039890410964 .00 or 0.0400 or 3.989041096% or 4.00%
allow 0.04 from $1.46 \times 10^{23} / 3.65 \times 10^{24}$
(iv) too few uranium-235 atoms (in naturally occurring uranium) or atomic abundance ratio too low (in naturally occurring uranium) chance of further fission, 1 or chance of 1 neutron hitting another (U-235) nucleus too low or not enough neutrons emitted
(b) (i) at least one β emission or ${ }_{91}^{234} \mathrm{X}$ or ${ }_{91}^{234} \mathrm{~Pa}$ two β emissions
(ii) new uranium-234 atoms created (somehow/by decaying uranium-238)
in equilibrium with uranium- 238 or decay at same rate as produced or as number of uranium-238 atoms decreases, so does number of uranium-234 atoms
(c) (i) 1. 57
2. 89
(ii) 1. $0.181 \times 1.66 \times 10^{-27} \times\left(3.00 \times 10^{8}\right)^{2}$ or $0.181 \times\left(3.00 \times 10^{8}\right)^{2}$ or
$1.63 / 1.629 \times 10^{16}$
$2.70(414) \times 10^{-11}(\mathrm{~J})$
2. $4.92(15348) \times 10^{11}(\mathrm{~J})$
(do not penalise J / kg as wrong unit)

Page 7	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	02

(d) (i) all uranium atoms undergo the same chemical reactions/behaviour/properties ignore chemical means
(ii) more liberated neutrons can escape through the sides of the rod before hitting another uranium-235 nucleus or large surface area to volume ratio

(e) social

political/ 'nimby' opposition
terrorist target/dirty bomb
accidents unlikely
built away from population centres
unattractive (in rural/coastal areas)
jobs created
operate continuously
large power output
(public perception of) leading to nuclear weapons
environmental
no CO_{2} emitted/small carbon footprint/no greenhouse gases emitted/ less global warming
radioactive waste long lasting
radioactive waste dangerous
land uninhabitable due to accidents
radiation escape to surroundings
danger of tsunami/earthquake
volume of waste small
small area
mining for uranium dirty
long term storage needed

economic

expensive to build
expensive maintenance
difficult/expensive disposal of waste
not easily switched on/off
creates jobs (do not credit twice)
decommissioning costs
fuel cheap/power station cheap to run
fuel abundant
easy to transport
at least two from each category

