MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9792 PHYSICS

9792/03

Paper 3 (Part B Written), maximum raw mark 140

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme: Teachers' version Syllabus		Paper
		Pre-U – May/June 2011 9	792	03
		Section A		
1	(a)			
		change in velocity		
	nev shc	v vector of same length and at (a small) angle to the given ve own (nearly at right angles to both) (they might start slightly sep	ctor and arated fro	δv om
	one δ <i>θ</i> = δ <i>θ</i> =	e another.) = νδt/r = δν/ν		(1) (1) (1)
	SO a	acceleration = $\frac{\delta v}{\delta t} = \frac{v \delta \theta}{r \delta \theta / v} = \left(\frac{v^2}{r}\right)$		(1) [4]
	(b) (i)	acceleration = $r \omega^2 = v^2/r$ acceleration = 0.16 × $(8\pi)^2$ = 101 m s ⁻²		(1) (1) [2]
	(ii)	force = ma = 0.20 × 101 = 20 N to 2 sig figs		(1) [1]
	(iii)	W and D directions correct (1) resultant smaller than D (1)		
		<i>W</i> and <i>D</i> directions correct (1) same size resultant (1)		
		<i>D</i> correct direction (1) resultant horizontal (1)		[6]
		Size of resultant may be indicated by relative sizes of arrows, or words or with mathematical relationship.	described	l in

[Total: 13]

	Page 3			Mark Scheme: Teacher	s' vers <u>ion</u>	Syllabus	Paper	r
				Pre-U – May/June	2011	9792	03	
2	(a) (i)	force	e per uni	t (positive) charge			(1)	[1]
	(ii)	W=	qV				(1)	[1]
	(iii)	work Eqx	k done = = qV	force × distance = Eqx so $E = V/x$			(1) (1)	[2]
	(b) (i)	<i>E</i> = 2 V m ⁻	24 V / 5 ⁻¹ or N C	× 10 ⁻⁴ m = 48 000			(1) (1)	[2]
	(ii)	C = pF o	Q/V = 5. or = 2.17	2 × 10 ⁻⁹ C / 24 V = 217 × 10 ⁻¹⁰ F			(1) (1)	[2]
	(iii)	Enei = 6.2	rgy = ½0 24 × 10 ^{−†}	$CV^2 = \frac{1}{2} \times (217 \times 10^{-12}) \times (J)$	24 ² OR ½ × 5.2 × 10) ⁻⁹ × 24	(1) (1)	[2]
	(c) unit wea field	form f aker f d from	īeld in co ield neai n top pla	entre of plates r edges of plates te spreading away			(1) (1) (1)	[3]
							[Total	: 13]
3	(a) (i)	spee	ed = 2π <i>rl</i>	$t = (2\pi \times 3.84 \times 10^8) / (2.3)$	6 × 10 ⁶) = 1022 m s ⁻	-1	(1)	[1]
	(ii)	kine = 3.8	tic enerc 34 × 10 ²¹	$y = \frac{1}{2} mv^2 = \frac{1}{2} \times 7.35 \times 1^3$ (J)	0 ²² × 1022 ²		(1) (1)	[2]
	(iii)	g.p.e = - (= - 7	e. = -G (6.67 × 1 7.63 × 10	m_1m_2 / r 0 ⁻¹¹ × 7.35 × 10 ²² × 5.98 0 ²⁸ (J)	× 10 ²⁴) / (3.84 × 10 ⁸))	(1) (1)	[2]
	(b)							
	distan Earth	ce fro / 10 ⁸	om m	gravitational potential energy / 10 ²⁸ J	total energy / 10 ²⁸ J	kinet /	tic energy 10 ²⁸ J	
	3.	.56		- 8.24	– 3.79 B	4.	45 D	
	3.	.84		Answer from (a)(iii) – 7.63	- 3.79 A (1) Answe	r from (a)(i 3.84	i)

[4]

(c) maximum k.e. = 4.45×10^{28} J = $\frac{1}{2} \times 7.35 \times 10^{22} \times v^2$ (1) $v = \sqrt{(2 \times 4.45 \times 10^{28})/(7.35 \times 10^{22})} = 1100 \text{ m s}^{-1}$ (1) [2]

-3.79 B (1)

4.07

- 7.20

C (1)

3.41 D (1)

[[]Total: 11]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
			Pre-U – May/June 2011	9792	03	
4	(a)	Diagram to the c Force c Force L Slow (+ Fast (+ At one	m showing electric and magnetic fields at right angles to lirection of the particles on particles in the correct direction Bqv for magnetic field and Eq for electric field •) particles deflected in direction of field) particles deflected in opposite direction to slow particle specific speed particles move straight through	o one another a	nd (1) (1) (1) (1) (1) (1)	
		2 comp	ulsory marks + any two others			[4]
	(b)	Flux de Flux as Flux lin	ensity as force per unit current in a wire of unit length flux density × area kage as flux × number of turns		(1) (1) (1)	[3]
	(c)	<i>B</i> = 1.2	$6 \times 10^{-6} \times 2000 \times I / 0.22$		(1)	
		<i>I</i> = (1.2	2 × 0.22) / (1.26 × 10 ⁻⁶ × 2000) = 105 A		(1)	[2]
	(d)	(i) e.ç no	i. it might melt the coil, the wire would have to be too thic t it would be too expensive/it would be dangerous	ck	(1)	[1]
		(ii) e.g	. use more turns/wire diameter greater		(1)	101
		vei	y low resistance/low resistivity/use low temperatures for	superconductiv	ity (1)	[2]
					[Total:	12]
5	(a)	particle all collis no forc	volume is negligible compared with container volume sions are elastic es between particles (except contact force when they co	llide)	(1) (1) (1)	[3]
	(b)	(i) √(<	$cc^2 > 0 = \sqrt{(3kT/m)}$		(1)	
		/ = √(<	= 296 K ≤c²>) = √(3 × 1.38 × 10 ⁻²³ × 296 / 5.3 × 10 ⁻²⁶) = 480 m s⁻	1	(1) (1)	[3]
		(ii) ka	is the same for both but the mass is different (as the s	and in different	(1)	ги гил
		(II) K.E) (1)	נין
	(c)	Referent There with these With owns of the the second seco	nce to the speed distribution of molecules will be many molecules travelling much faster than the r. are hydrogen molecules they will have speed greater the sygen the r.m.s. speed is much less fraction reaching escape speed is much smaller.	m.s. speed nan escape spee	$\begin{array}{c} \underline{(1)} \\ (1) \\ \underline{(1)} \\ (1) \\ (1) \end{array}$	
		2 comp	ulsory marks plus one other			[3]
					[Total:	10]
						-

	Page 5		Mark Scheme: Teachers' version Syllabus		
			Pre-U – May/June 2011 9792	03	
6	(a)	(The co fraction	ount rate will be a fraction of the activity as) the counter will only collec n of the emitted particles	t a (1)	[1]
	(b)	(i) T =	= ln 2/λ = ln 2 / 4.6 × 10 ⁻³ = 151 s	(1)	[1]
		(ii) R = In (t =	= $R_0 e^{-\lambda t}$ so 8.3 × 10 ³ = 7.6 × 10 ⁸ × $e^{-4.6 \times 10^{-3} t}$ (1.092 × 10 ⁻⁵) = -11.425 = -4.6 × 10 ⁻³ t = 11.425/4.6 × 10 ⁻³ = 2480 s (= 41 min)	(1) (1) (1)	[3]
	(c)	Applica 234 / 3 ²	ation of inverse square law ² = 26 (counts per minute)	(1) (1)	[2]
				[Tota	l: 7]
7	(a)	A free o movem Forced Dampe	oscillation is when there is repetition of the same forwards and backward nent / no loss of energy I oscillations are when an external influence makes an object oscillate ed oscillations are when the amplitude of the oscillation decreases	ls (1) (1) (1)	[3]
	(b)	Resona the driv The ose	ance is when a driver of the same frequency as the natural frequency ven causes a large amplitude oscillation for this building scillations of the ground are of the same frequency as parts of the building	of (1) g (1)	
		i.e. 1 m	nark for understanding the principle, 1 for applying it in this situation		[2]
	(c)	The rub The rub	bber absorbs energy from the earthquake bber dampens the oscillations	(1) (1)	[2]
				[Tota	l: 7]
8	(a)	$L = 4\pi c$ $L = 4\pi z$ $= 3.6$	$\sigma \sigma^2 T^4$ where $\sigma = 5.67 \times 10^{-8}$ (W m ⁻² K ⁻⁴) × 5.67 × 10 ⁻⁸ × (6.96 × 10 ⁸) ² × 5700 ⁴ S4 × 10 ²⁶ W	(1) (1)	[2]
	(b)	(i) λ _{ma}	$_{\text{ax}} = 2.9 \times 10^{-3} / \text{T} = 2.9 \times 10^{-3} / 5700$ = 5.1 × 10 ⁻⁷ m	(1) (1)	[2]
		(ii) gre	een	(1)	[1]
	(c)	E = mc mass lo	2^{2} 3.64 × 10 ²⁶ = m × (3.00 × 10 ⁸) ² ost per second = m = 4.0 × 10 ⁹ kg s ⁻¹	(1) (1)	[2]

[Total: 7]

	Page 6			Mark Scheme: Teachers' version Syllabus			
				03			
9	(a)	Directis pathe	ction ralle lirec	of oscillation or displacement (of molecules/particles) I to tion of travel or direction in which energy is transferred	l	(1) (1) (1)	[3]
	(b)	340 : λ = 1	= 20 7 m	× 10 ³ λ m		(1)	
		17 m	ım to	o 4.25 mm.		(1)	[2]
	(c)	(i) 	Disp Disp Disp	lacement at L is 0.8 (units) lacement at M is 0.0 (units) lacement at N is –1.0 (units)			
			Evid All th	ence of subtraction hree answers correct		(1) (1)	[2]
		(ii) (Corr 1.5 c	ect line through points complete waves drawn (allow ecf for their wave shape))	(1) (1)	[2]
	(d)	(i)	Valu 0.45	e of Δ <i>f</i> = 0.45 kHz <u>and</u> <i>f</i> = 50.80 KHz /50.80 = 2 <i>v</i> /340		(1)	
		I	nse	ct's speed, $v = 1.5 \text{ (m s}^{-1}\text{)}$		(1)	[2]
		(ii)	Diffra	action		(1)	[1]
	(e)	(i) (i)	Evid or as Corr Subs	ence of attempt to determine gradient, dI/dx , at $I = 8$ s stated coordinates. ect calculation of their gradient stitution in differential equation to give reasonable valu	s.4 W m ⁻² on gra e for α	ph (1) (1) (1)	[3]
		(ii) I	Unit	s of α : m ⁻¹		(1)	[1]
	((iii)	Solu I = J	tion to differential equation $I_0 e^{-\alpha x}$		(1)	[1]
	((iv) 	Fron Fron RHS	n graph I_0 = 16.0 (W m ⁻²) n graph I = 12.4 (W m ⁻² at x = 0.4 m) 6 approx. equal to LHS after substitution.		(1) (1) (1)	[3]
			12.4 12.4	≈ 16 e ^{- (0.7 × 0.4)} ≈ 12.1			

[Total: 20]

Page 7			Mark Scheme: Teachers' version	Syllabus	Paper		
			Pre-U – May/June 2011	9792	03		
10	(a) Su	ubstitu = (0.5	tion in $P = (1/2 mv^2)/t$ × 11600 × 10 ³ × 20 ²)/60 = 3.9/3.867 × 10 ⁶ (W)		(1)		
	Po	ower =	39 (MW)		(1)	[2]	
	(b) (i)	In <i>P</i>	$= 3\ln v + \ln(\frac{1}{2}A\rho)$		(4)	1 47	
		Inte	rcept is $\ln(\frac{1}{2}A\rho)$		(1)	[1]	
	(ii)	Inte	rcept value is 8.4		(1)	[1]	
	(iii)	Sub	ostitution with correct intercept only		(1)		
		1∕₂ (т	t^2 × 1.23 = e ^{8.4 =} 4447				
			$l^{2} = 2301$ l = 48 (47.98) (m)				
		Blac	de length = 48 (m)		(1)	[2]	
	(a) T		- moment of inerties a second section		(4)		
	(c) Io Ar	orque = <u>ngul</u> ar	 moment of inertia × acceleration acceleration stated 		(1) (1)	[2]	
	(]	oocat	$T = I_0$ with all averabala defined λ				
	(A	ccept	I = Ia with all symbols defined.)				
	(d) (i)	Gen	eral relationship				
		I = I	$\Sigma m R^2$		(1)		
		(so. And	I = IVIT(I) idea that all mass is at the same radius, <i>R</i> .		(1)	[2]	
					. ,		
	<i>(</i> ii)	<i>m</i> =	$\frac{2\pi \times 4}{1} = 0.42$ (rad s ⁻¹)				
	()	ω-	60				
		Ang	ular speed = 0.42 (rad s ⁻¹)		(1)	[1]	
	(iii)	1	Conversions of minutes to seconds and kW to W		(1)		
			Loss in RKE = average power × time = $0.5 \times 6.5 \times 10^3 \times 1800 = 5.85 \times 10^6$ (1)				
			RKE loss = 5.85 MJ		(1)	[2]	
		2	Assumption:				
		£	Rotational KE is equivalent to the work done against fr	riction	(1)	[1]	
	(iv)	Rec	alls $I = 2E/\omega^2$		(1)		
	. ,	Sub	stitution $I = (2 \times 5.85 \times 10^6)/0.42^2 = 66.3 \times 10^6$		(1)		
		Mon Unit	nent of inertia = 6.6 × 10' s are kg m ²		(1) (1)	[4]	
	()	τ – Ι	\sim $M D^2$		× /		
	(V)	1 = 1 6.6	$\times 10^7 = M \times 5.5^2$		(1)		
		M =	$2.2 \times 10^{6} \text{ kg}$		(1)	[2]	
					[Total:	20]	

Page 8		}	Mark Scheme: Teachers' version Syllabus		Paper	۶r	
			Pre-U – May/June 2011	9792	03		
(a)	(i)	uud	or up up down		(1)	[1]	
	(ii)	Pho	ton		(1)	[1]	
	(iii)	Iden	tifies the relationship $F = \frac{Q_1 Q_2}{4\pi\varepsilon_0 r^2}$		(1)		
		Corr	rect substitution for $Q_1Q_2 = e^2 = (1.60 \times 10^{-19})^2$		(1)		
		Corr	ect substitution for $4\pi\epsilon_0 F = 4\pi 8.85 \times 10^{-12} 8.23 \times 10^{-8}$	= 915.28 <i>x</i> 10 ⁻²⁰	(1)		
		Rad	ius of orbit $r = 0.0529$ (nm) Lose a mark if answer no	ot in nm.	(1)	[4]	
(b)	(i)	Quo sign <i>E</i> ₃ -	te formula from sheet and substitute for n values – ex $E_2 = -13.6 \text{ eV} \left(\frac{1}{3^2} - \frac{1}{2^2} \right) = 1.89(\text{eV})$	pect to see minus	s (1)		
		Ene	rgy difference = 1.89 (eV)		(1)	[2]	
	(ii)	Con Corr	version of eV to J ect substitution		(1) (1)		
		λ =	$\frac{hc}{(E_3 - E_2)} = \frac{6.63x10^{-34}x3.00x10^8}{1.89x1.60x10^{-19}} = 6.58x10^{-7} \text{ (m)}$				
		Wav	relength = 6.6×10^{-7} (m)		(1)	[3]	
(c)	Any	/ 4 m	arking points from the following:-				
	•	Ene	rav levels are fixed or discrete		(1)		
	•	Eac	n level has its own principal quantum number, <i>n</i>		(1)		
	•	The	standing waves are the fixed modes		(1)		
	•	Ine	number of allowed standing waves in the circumference of allowed standing waves in the circumference of a standing wave	ence is one of the	9		
		Acce	ept mathematical expression $2\pi r = n\lambda$ (symbols explained)	ned)	(1)		
	•	Refe	erence to the de Broglie wavelength		(1)		
	•	Pacl Ana	ket or quantum of energy $E = nt$ absorbed or emitted I ular momentum is quantised	Detween levels	(1) (1)[4	max	
(-1)	(1						
	<u>Pa</u> (a) (b)	Page 8 (a) (i) (ii) (iii) (b) (i) (i) (c) Any (c) Any (c) Any (c) Any (c) Any (c)	Page 8(a) (i) uud(ii) Phote(ii) Iden(iii) Iden(iii) Iden(iii) Corr(b) (i) Quo(i) Quosign $E_3 -$ Ener(ii) Conr(ii) Conr(ii) Conr(ii) Conr(ii) Conr(ii) Conr $\lambda =$ Waw(c) Any 4 ma• Ener• Angr(d) 'Indeterm	Page 8Mark Scheme: Teachers' version Pre-U – May/June 2011(a) (i) uud or up up down (ii) Photon(iii) Identifies the relationship $F = \frac{Q_1 Q_2}{4\pi\varepsilon_0 r^2}$ Correct substitution for $Q_1 Q_2 = e^2 = (1.60 \times 10^{-19})^2$ Correct substitution for $4\pi\varepsilon_0 F = 4\pi 8.85 \times 10^{-12} 8.23 \times 10^{-8}$ Radius of orbit $r = 0.0529$ (nm) Lose a mark if answer not (b) (i) Quote formula from sheet and substitute for n values – existing. $E_3 - E_2 = -13.6 \text{ eV} \left(\frac{1}{3^2} - \frac{1}{2^2}\right) = 1.89 (\text{eV})$ Energy difference = $1.89 (\text{eV})$ (ii) Conversion of eV to J Correct substitution $\lambda = \frac{hc}{(E_3 - E_2)} = \frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{1.89 \times 1.60 \times 10^{-19}} = 6.58 \times 10^{-7} \text{ (m)}$ Wavelength = 6.6×10^{-7} (m)(c) Any 4 marking points from the following:- • Energy levels are fixed or discrete • Each level has its own principal quantum number, n • The standing waves are the fixed modes • The number of allowed standing waves in the circumfered principal quantum numbers (see diagram for example) Accept mathematical expression $2\pi r = n\lambda$ (symbols explait • Reference to the de Broglie wavelength • Packet or quantum of energy $E = hf$ absorbed or emitted I • Angular momentum is quantised	Page 8Mark Scheme: Teachers' versionSyllabus(a) (i) uud or up up down9792(ii) Photon(iii) Identifies the relationship $F = \frac{Q_1Q_2}{4\pi c_0 r^2}$ Correct substitution for $Q_1Q_2 = e^2 = (1.60 \times 10^{-19})^2$ Correct substitution for $4\pi c_0 F = 4\pi 8.85 \times 10^{-12} 8.23 \times 10^{-8} = 915.28 \times 10^{-20}$ Radius of orbit $r = 0.0529$ (nm) Lose a mark if answer not in nm.(b) (i) Quote formula from sheet and substitute for n values – expect to see minus sign. $E_a - E_a = -13.6 \text{ eV}\left(\frac{1}{3^2} - \frac{1}{2^2}\right) = 1.89 (\text{eV})$ Energy difference = $1.89 (\text{eV})$ (ii) Conversion of eV to J Correct substitution $\lambda = \frac{hc}{(E_3 - E_2)} = \frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{1.89 \times 1.60 \times 10^{-19}} = 6.58 \times 10^{-7}$ (m) Wavelength = 6.6×10^{-7} (m)(c) Any 4 marking points from the following:- • Energy levels are fixed or discrete • Each level has its own principal quantum number, n • The standing waves are the fixed modes • The number of allowed standing waves in the circumference is one of the principal quantum numbers (see diagram for example) Accept mathematical expression $2\pi r = n\lambda$ (symbols explained) • Reference to the de Broglie wavelength • Packet or quantum of energy $E = hf$ absorbed or emitted between levels • Angular momentum is quantised	Page 8Mark Scheme: Teachers' versionSyllabusPaperImage: Pre-U - May/June 2011979203(a) (i) uud or up up down(1)(ii) Photon(1)(iii) Identifies the relationship $F = \frac{Q_i Q_2}{4\pi\varepsilon_0 r^2}$ (1)Correct substitution for $Q_i Q_2 = e^2 = (1.60 \times 10^{-19})^2$ (1)Correct substitution for $4\pi\varepsilon_0 F = 4\pi 8.85 \times 10^{-12} 8.23 \times 10^{-8} = 915.28 \times 10^{-20}$ (1)Radius of orbit $r = 0.0529$ (nm)Lose a mark if answer not in nm.(1)(b) (i) Quote formula from sheet and substitute for n values – expect to see minus sign.(1) $E_3 - E_2 = -13.6 \text{ eV} \left(\frac{1}{3^3} - \frac{1}{2^2}\right) = 1.89 (\text{eV})$ (1)Energy difference = $1.89 (\text{eV})$ (1)(ii) Conversion of eV to J(1)Correct substitution(1) $\lambda = \frac{hc}{(E_3 - E_2)} = \frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{1.89 \times 1.60 \times 10^{-19}} = 6.58 \times 10^{-7}$ (m)Wavelength = 6.6×10^{-7} (m)(1)(c) Any 4 marking points from the following:-(1)• Energy levels are fixed or discrete(1)• The number of allowed standing waves in the circumference is one of the principal quantum number, n (1)• The number of allowed standing waves in the circumference is one of the principal quantum numbers (see diagram for example) Accept mathematical expression $2\pi r = n\lambda$ (symbols explained)(1)• Reference to the de Broglie wavelength(1)• Reference to the de Broglie wavelength(1)• Angular momentum is quantised(1)	

- It is not possible to predict (for the electron/proton) a future value (1)
- from present knowledge of its position/energy level/trajectory/momentum/speed (1) [2]

Page 9		ge 9	Mark Scheme: Teachers' version Syllab		Paper	
			Pre-U – May/June 2011	9792	03	
	(e)	Correct s $L_{s} = 4\pi\sigma$	Substitution in Stefan's Law for the Sun or for Betelgeus $R_{\rm S}^2 T_{\rm S}^4$ or $L_{\rm B} = 4\pi\sigma R_{\rm B}^2 T_{\rm B}^4$	6e	(1)	
		e.g. $\frac{L_{\rm s}}{L_{\rm B}}$	$=\frac{R_{\rm s}^{\ 2}(2T_{\rm B})^{4}}{(400R_{\rm s})^{2}T_{\rm B}^{4}}=\frac{16}{160000}=\frac{1}{10000}$		(1)	
		Ratio: $\frac{L}{r}$	$\frac{3}{2} = 10^{-4}$		(1)	[3]
		L_{I}	3			
					[Total:	20]
12	(a)	Non-acc	elerated/constant velocity/constant speed in a straight	ine	(1)	[1]
	(b)	It is has t	the same value (is a constant) for all observers		(1)	[1]
	(c)	Simple c e.g. time	orrect statement appears to run slowly on moving clocks		(1)	
		or a more detailed correct explanation: Refers to two observers in relative motion Compares time interval between the same two events (e.g. ticks of moving clock) States correct qualitative relationship between time intervals as viewed from a defined reference frame (e.g. the time between ticks on the moving clock is		(1) (1)		
		greater t clock)	nan the time between ticks on the 'rest' clock when me	asured on the rest	(1) [3	max

Page 10	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2011	9792	03

(d)

Lifetime in laboratory

Correct axes correctly labelled (no penalty for units or missing units)	(1)	
Starts at t = 10 ns on time axis	(1)	
Asymptotic to $v = c$ (labelled or implied by drawing)	(1)	
Correct shape curve (asymmetric – most of change after 0.8c)	(1)	[4]

(e) (i)	Time passes more slowly in the moving reference frame The time dilation factor approaches infinity as <i>v</i> approaches <i>c</i> Justified by reference to the time dilation equation or the graph in (d)	(1) (1) (1)	[3]
(ii)	time = distance / speed = 20 / 0.95 = 21 years	(1)	[1]
(iii)	time dilation factor $\frac{1}{\sqrt{1-0.95^2}} = 3.2$ (or equivalent calculation)	(2)	
	time elapsed = 21.1 / 3.20 = 6.59 years	(1)	[3]
(iv)	When they reunite the travelling organisms have experienced less time than the stay-at-home organism so they have travelled into the future By $21.1 - 6.6 = 14.5$ years	(1) (1)	[2]
(v)	The stay-at-home organisms are in the same reference frame throughout		
	in their journey	(1)	
	The travelling organism undergoes several periods of acceleration (so changes its reference frame)	(1)	

changes its reference frame)(1)The travelling organism is in a non-inertial reference frame during periods of
acceleration(1)

(2 max. by making two different points)

[Total: 20]

[2]

Page 11			Mark Scheme: Teachers' version Syllabus		Paper	•	
				Pre-U – May/June 2011	9792	03	
13	(a)	ΔU : giver	= <i>Q</i> ו by	+W (or as a word equation), sign must be consistent student	with definitions	as (1)	
		$\Delta U = 0$ $Q = 1$ $W = 0$: cha heat worł	ange in internal energy of a system supplied to system (accept ΔQ) done on a system (accept ΔW)			
		Acce corre	ept c ctly	different sign(s) if consistent with definitions. All the	ree terms defir	ned (1)	[2]
	(b)	Idea of the <u>destr</u>	that e sy <u>oye</u>	Q and W transfer energy to the system and that the stem is equal to the energy supplied – so there is <u>no</u> d.	increase in ene	rgy <u>I or</u> (1)	[1]
	(c)	Simp	ole si	tatement: e.g. linking entropy to disorder without clarifi	cation	(1)	
		or \ S	More whic syste	e detail: e.g. entropy of a system is <u>related to the r</u> h the energy in a system can be distributed among t em (or the particles can be distributed in space)	number of ways the particles in t	in the (2)	
		or / i	Acce dent	Sept $S = k$ In W with a clear explanation of the mean tified as Boltzmann's constant	aning of <i>W</i> and	d <i>k</i> (2)	
		or / t	Acce therr	ept equivalent correct explanations in terms nodynamics (not on syllabus but may have been taugh	of macrosco nt)	pic (2)	[2]
	(d)	(i) (i	Chei <u>s tra</u>	mical energy released in combustion (bond formation) ansferred to kinetic energy of the particles in the hot ga	seous product	(1)	[1]
		(ii) (ii)	Num or or	ber of ways increases Kinetic energies are distributed randomly The number of ways of distributing energy amo	ongst the parti	(1) (1) cle	
		(or	increases The number of ways of distributing the particles in spa	ce increases	(2) (2)	[2]
		(iii) ; ;	Dem you or	nonstrates a clear understanding of <i>efficiency</i> (accept s can't get as much energy out as you put in') Some of the heat supplied is transferred to the su	statements such	as (1) the	
		(or	exhaust gases Some of the heat supplied is transferred to the su exhaust gases so the work done must be less than the	rroundings by the energy supplie	(1) the d (2)	[2]

Page 12		2	Mark Scheme: Teachers' version	Syllabus	Paper	Paper	
			Pre-U – May/June 2011	9792	03		
	(e)	(i)	effic	iency = W / Q_1 or $(W / Q_1) \times 100\%$		(1)	[1]
		(ii)	W =	$Q_1 - Q_2$		(1)	
			effic	iency = $\frac{(Q_1 - Q_2)}{Q_1} = 1 - \frac{Q_2}{Q_1}$		(1)	
			Use	of second law: entropy of universe increases		(1)	
			so - 1	$\frac{\mathbf{z}_2}{\mathbf{r}_2} \geq \frac{\mathbf{z}_1}{\mathbf{T}_1}$		(1)	
			Lead	ding to $\frac{Q_2}{Q_1} \ge \frac{T_2}{T_1}$ (could be implied by substitution)		(1)	
			effic	iency $\leq 1 - \frac{T_2}{T_1}$ (mark is for inequality used correctly thro	oughout derivatior	า (1)	[6]
		(iii)	Sens Sens (Acc	sible estimates of T_1 expected range from 700 K to 150 sible estimate of T_2 (must be less than T_1) accept rang ept Celsius equivalents)	00 K e 273 K to 400 K	(1) (1)	
			Valu	e for efficiency consistent with estimates (must use K)	allow ecf	(1)	[3]
						[Tota	I 20]
14	(a)	(i)	Clas OR	sical explanation – intensity proportional to wave am intensity is energy delivered per second per unit area of	plitude-squared of wave front	(1)	
			Qua phot	ntum explanation – intensity proportional to the ons or photons per second	<u>rate</u> of arrival of	of (1)	[2]
		(ii)	Clas	sical explanation – continuous absorption of energy	from wave	(1)	
			Qua	ntum explanation – discrete absorption in quanta or p	ohotons	(1)	[2]
	(b)	Ru	therfo	ord's planetary model –			
		electrons can orbit at any radius or with a continuous range of energies.					
		Bo l (qu	hr's n antise	nodel – idea of discrete orbits or allowed radii or energed energy or angular momentum)	gy levels	(1)	[2]
	(c)	Ide	ea of quantum jumps between discrete energy levels (from diagram)				
		Ele	ctron	jumps in correct direction (from lower to higher end (could be from diagram)	ergy) as photon	is (1)	
		Dis	crete	values of ΔE linked to discrete values of f or λ using Δ	E = hf	(1)	[3]
		(ma	ax. 2 r	narks if no relevant diagram is used)			

Page 13	Mark Scheme: Teachers' version	Syllabus	Paper					
	Pre-U – May/June 2011	9792	03					
(d) (i) A a) (i) According to Newtonian mechanics : particles (e.g. electrons) always have a definite position and momentum							
0	r uncertainty in position is not linked to uncertainty in m	omentum	(1)					
bi pi ve	basic explanation of the H.U.P . e.g. the more precisely the position of a particle is defined, the greater the uncertainty in its momentum (or vice versa).							
o w m	 r accept explanations based on wave mechanics avelength is precisely defined (definite momentum) the nust be infinitely long (infinite uncertainty in position) 	 e.g. if elect nen the wave tr 	ron rain (1)					
e: ca la	xplanation of incompleteness – e.g. Einstein's view th annot describe the detailed properties of an electron so icking	nat quantum the it is in some ser	ory nse (1) [3]					
(ii) lo	lentifies aperture width as Δx		(1)					
U	ses $\Delta p \ge \frac{h}{2\pi\Delta x}$ to calculate $\Delta p = 1.05 \times 10^{-24}$ kg m s ⁻¹ f	or electron	(1) [2]					
(iii) C (e	omparison with value of p , 2.73 × 10 ⁻²³ kg m s ⁻¹ , to show e.g. $\Delta p \approx 4\% p$ or $\Delta p \approx 0.039 p$)	/ significance	(1)					
S	o electrons are likely to be scattered through a s merging electrons will be travelling in a range of directior	ignificant angle is.	or (1) [2]					
(e) Repre (Ampl Diffrad Rando	esentation of photon by a wave function itude squared related to) probability of arrival on screen ction at slit leading to chance of arrival anywhere on scre om collapse of wave function leading to detection of phot	en on	(1) (1) (1) (1) [4]					
	[Tot							