MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9792 PHYSICS

9792/02

Paper 2 (Part A Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2	Mark Scheme: Teachers' version Syllabus		Paper	
			Pre-U – May/June 2011	9792	02	
1	(a) (mo	omen	tum =) mass × velocity or mv if defined		(1)	[1]
	(b) force is proportional (equal) to the rate of change of momentum OR force is proportional (equal) to the mass × the acceleration (not just form)					
	(im (= r	(impulse =) force × time (undefined symbols fine here) (= mass × acceleration × t) = mass × v				
	(c) (i)	Γ				
			new velocity a change in velocity (i.e. corr	added on left r ect diagonal)	(1) (1)	[2]
	(ii)	v² v = in di	= 16 ² + 12 ² = 20 (m s ⁻¹) rection S 53° W (or as shown on diagram)		(1) (1) (1)	[3]
	(iii)	char Ns	nge in momentum = 1460 or kg m s ⁻¹ (1)		(1) [2]	
					[Total	: 10]
2	(a) (i)	Е			(1)	
	(ii)	В			(1)	
	(iii)	A			(1)	[3]
	(b) dua	ctile (c	or tough)		(1)	[1]
	(c) The	e area	a under/beneath the graph		(1)	[1]
	(d) A s par	traigh allel t	nt line to the x-axis o OA		(1) (1)	[2]
	(e) (Y = (2	=) stre 2.4 /3	ess / strain or <i>Fl</i> / <i>Ae</i> .9 × 10 ⁻⁷) × (<i>F</i> / <i>e</i>) e of using graph to find <i>E</i> and e		(1) (1)	
	e.g (Y :	. = 89 =) 1.1	0/0.0046 (between O and A but condone 10 ⁿ factor) 7 × 10 ¹¹ (Pa)		(1) (1)	[4]
					[Total	: 11]

Page 3		3	Mark Scheme: Teachers' version	Syllabus	Paper	Paper	
			Pre-U – May/June 2011	9792	02		
3	(a) (re:	sistan	ce) = potential difference or voltage / current		(1)	[1	
	(b) (12	2 V / 4	Ω =) 3.0 (A)		(1)	[1]	
	(c) (i)	2 (V)		(1)	[1	
	(ii)	2 / 1 = 1.2	.6 or candidate's (i) / 1.6 25 (A)		(1) (1)	[2]	
	(iii)	(3.0	A – 1.25 A =) 1.75 (A)		(1)	[1]	
	(d) (i)	For 9 <i>I</i> 1 =	9.6 Ω and p.d. of 12 V I_n = 1.25 A (ignore subscript) I_2 or is current from generator (no current to/from bat	tery	(1) (1)	[2]	
	(ii)	som and	e of the 1.25 A from the generator will flow in the oppo will charge up the battery	osite direction to	I ₃ (1)	[1]	
					[Tota	ıl: 9]	
4	(a) dia ligh ligh	gram nt in di nt strik	showing only reflection and $i = r$ (by eye) rection dense to rare ing surface at an angle greater than the critical angle		(1) (1) (1)	[3]	
	(b) sin 1/s	90 / s in <i>c</i> =	$\sin c = n$ n		(1) (1)	[2]	
	(c) (i)	refra /freq	ictive index or speed in medium is dependen uency/colour	t on waveleng	ıth (1)	[1]	
	(ii)	1. 2.	speed = 3.0 × 10 ⁸ /1.536 = 1.953 × 10 ⁸ m s ⁻¹ (at least 3 sig.fig.) sin 90 / sin c = n = 1.536 / 1.517		(1) (1) (1)	[2]	
		-	sin c = 1.517/ 1.536 giving c = 81°		(1)	[2]	
	(iii)	diag 4050	ram or 4/sin 81° or 4 × candidate's <i>n</i>) – 4000 = 0.050 km) (=) 50 (m)		(1) (1)		
		(othe	er possible values from earlier roundings)		(1)	[3]	
					[Total:	: 13	

Page 4			Mark Scheme: Teachers' version	Syllabus	Paper	Paper	
				Pre-U – May/June 2011	9792	02	
5.	(a)	(i)	(f =) 5.09)3.0 × 10 ⁸ / 589 × 10 ^{−9} (ignore 10 ⁿ) (5.1) × 10 ¹⁴ (Hz)		(1) (1)	[2]
		(ii)	32 – T = 1	→ 42 waves in t 1.96 × 10^{-15} s so t ≈ 7 × 10^{-14} s according to candidate	te's value	(1) (1)	[2]
		(iii) from (iv) any		n two different sources/not a constant phase difference coherence between one set of waves and another cannot last/changes		(1) ges jort	[1]
			time				
	(b)	sigr carr amp	nal (w rier (v plitud	ave) vave) e modulated (wave)		(1) (1) (1)	[3]
						[Total:	: 10]
6.	(a)	diag (1 n fou	gram nark (r of th	showing alpha source, gold foil, detector off for any omission) nese points:	4		(2)
			fire o back few	α -particles at foll; vacuum; move detector; record coun sscattering \rightarrow +ve/same charge as α ; deflected \rightarrow nucleus small/most pass through so empt	ts; y space	(4)	[6]
	(b)) spontaneous: not affected by anything (associated with the atom) such as pressure/temperature/chemical combination				(1) (1) (2)	[2]
		ran or o	dom: lirecti	impossible to predict when/which nucleus will decay ion of emission		(1)	[2] [1]
	(c)	at th but nun	ne sta subs nber (art the rate of decay is fixed or dN/dt is –ve or λ const. equently the number of nuclei falls/halves decaying each hour falls or dN/dt falls or dN/dt N		(1) (1) (1)	[3]
	(d)	(i)	1 in 2.4	1000 decay: 2.4 × 10^{15} present × 10^{12} decay in an hour at the start		(1) (1)	[2]
		(ii)	10 h = 2.4	alf lives means $2.4 \times 10^{15} / 2^{10}$ 4 x 10 ¹⁵ / 1024 = 2.34 × 10 ¹²		(1) (1)	[2]
	[[Total:	: 16]

Page 5		5	Mark Scheme: Teachers' version	Syllabus	Pape	r
			Pre-U – May/June 2011	9792	02	
7.	(a) loo ar thi so or	oks like I d des is impl they l may s	e diffraction/interference/superposition tructive/constructive pattern ies that electrons can be considered as a wave (function have dual properties/wave-particle duality sometimes be considered as a particle and sometimes	on) as a wave motion	(1) (1) (1)	[3]
	(b) (<i>A</i> = (= 2	= h/p 6.63 × 2.60 ×	=) <i>h/mv</i> seen or used 10 ^{−34} / (9.11 × 10 ^{−31} × 2.8 × 10 ⁷) 10 ^{−11} m		(1) (1) (1)	[3]
					[Tota	al: 6]
			Section B			
8	(a) (i)	1. 2.	800 (A) 350 000 or 3.5 × 10 ⁵ (V)		(1) (1)	
	(ii)	(<i>P</i> = 2.8) VI seen or implied (in 1. or 2.) × 10⁸ (W) and 0 		(1) (1)	
	(iii)	up a dece time	and down graph – e.g. sawtooth, triangular wave – and ent sin ² graph with correct curvature at bottom e period of bumps = 0.010 s	number on axis	(1) (1) (1)	
	(iv)	hori: hori:	zontal line zontal line at 2.8 × 10 ⁸ W / candidate's value		(1) (1)	
	(v)	refe area	rence to area under the graph a under the graph is greater		(1) (1)	[11]
	(b) (i)	0.01	07 m or 1.07 cm or 10.7 mm		(1)	
	(ii)	π(r ₁ ² 6.49	$r_2^2 - r_2^2$) or $\pi (1.50^2 - 0.43^2)$ or $\pi (0.0150^2 - 0.0043^2)$ 0/6.50 cm ² or 6.49/6.50 × 10 ⁻⁴ m ²		(1) (1)	
	(iii)	R = 1.72	ρ l/A or 1.72 × 10 ⁿ × 5.8 × 10 ⁿ /6.49 × 10 ⁿ 2 × 10 ⁻⁸ × 580 000/6.49 × 10 ⁻⁴ or 15.3/15.4 Ω		(1) (1)	
	(iv)	(<i>P</i> = 9.79) <i>I</i> ² <i>R</i> or 800 ² × 15.3/15.4 – 9.86 MW		(1) (1)	[7]

Page 6		Mark Scheme: Teachers' version	Syllabus	Paper	
		Pre-U – May/June 2011	9792	02	
(c)	financia high volt d.c. volta transforn d.c. trans	I consequences: age transmission is cheapest/most efficient age transformation expensive nation costs not cancelled by reduced transmission cos sformation is less efficient	sts	(1) (1) (1) (1)	
	practica d.c. trans intermed spare pa circuit br d.c. supp less relia domestic good cor	lity: sformation complicated liate tapping off difficult arts less readily available/more expensive eakers less straightforward/expensive/straightforward oly dangerous able (reduced availability) to transformers (in chargers etc.) use a.c. mmunications (for multi-terminal systems)		$(1) \\ (1) $	
	reduced short dis skin effe more cal not in se different second s small sca thicker c capacita dielectric	a advantages: tances ct/resistive losses unimportant over short distances bles not a problem a applications require different voltages or specific exam specific example such as: electronics require ~10 V ale rectification to d.c. easy ables not a problem nce/reactive/power loss small in air	nple	$(1) \\ (1) $	
	other ap	propriate suggestions	ea	ch (1)	
	maximu	m for question = 7			[7]

[Total: 25]