MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9792 PHYSICS

9792/02
Paper 2 (Part A Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9792	02

1 (a) (momentum $=$) mass \times velocity or $m v$ if defined
(b) force is proportional (equal) to the rate of change of momentum

OR force is proportional (equal) to the mass \times the acceleration (not just formula)
(impulse $=$) force \times time (undefined symbols fine here)
($=$ mass \times acceleration $\times \mathrm{t}$) $=$ mass $\times \mathrm{v}$
(c) (i)

new velocity added on left change in velocity (i.e. correct diagonal)
(ii) $v^{2}=16^{2}+12^{2}$
$\mathrm{v}=20\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
in direction $\mathrm{S} 53^{\circ} \mathrm{W}$ (or as shown on diagram)
(iii) change in momentum $=1460$

Ns or $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$

2 (a) (i) E
(ii) B
(iii) A
(b) ductile (or tough)
(c) The area under/beneath the graph
(d) A straight line to the x-axis
parallel to OA
(e) $(\mathrm{Y}=$) stress / strain or Fl/Ae
$=\left(2.4 / 3.9 \times 10^{-7}\right) \times($ F/e $)$
evidence of using graph to find F and e e.g. $=89 / 0.0046$ (between O and A but condone 10^{n} factor)
$(Y=) 1.17 \times 10^{11}(\mathrm{~Pa})$

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	$\mathbf{9 7 9 2}$	02

3 (a) (resistance) = potential difference or voltage / current
(b) $(12 \mathrm{~V} / 4 \Omega=) 3.0(\mathrm{~A})$
(c) (i) 2 (V)
(1) [1]
(ii) 2 / 1.6 or candidate's (i) / 1.6
$=1.25$ (A)
(iii) (3.0 A $-1.25 \mathrm{~A}=) 1.75(\mathrm{~A})$
(d) (i) For 9.6Ω and p.d. of $12 \mathrm{~V} I_{\mathrm{n}}=1.25 \mathrm{~A}$ (ignore subscript)
$I_{1}=I_{2}$ or is current from generator (no current to/from battery
(ii) some of the 1.25 A from the generator will flow in the opposite direction to I_{3} and will charge up the battery

4 (a) diagram showing only reflection and $i=r$ (by eye)
light in direction dense to rare
light striking surface at an angle greater than the critical angle
(b) $\sin 90 / \sin c=n$
$1 / \sin c=n$
(c) (i) refractive index or speed in medium is dependent on wavelength /frequency/colour
(ii) 1. speed $=3.0 \times 10^{8} / 1.536$
$=1.953 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ (at least 3 sig.fig.)
2. $\sin 90 / \sin \mathrm{c}=\mathrm{n}=1.536 / 1.517$
$\sin \mathrm{c}=1.517 / 1.536$ giving $\mathrm{c}=81^{\circ}$
(iii) diagram or $4 / \sin 81^{\circ}$ or $4 \times$ candidate's n

4050-4000
($x=0.050 \mathrm{~km})(=) 50(\mathrm{~m})$
(other possible values from earlier roundings)
[Total: 13]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9792	02

5. (a) (i) $(\mathrm{f}=) 3.0 \times 10^{8} / 589 \times 10^{-9}$ (ignore 10^{n})

$$
\begin{equation*}
5.09(5.1) \times 10^{14}(\mathrm{~Hz}) \tag{1}
\end{equation*}
$$

(ii) $32 \rightarrow 42$ waves in t
$\mathrm{T}=1.96 \times 10^{-15}$ s so $\mathrm{t} \approx 7 \times 10^{-14} \mathrm{~s}$ according to candidate's value
(iii) from two different sources/not a constant phase difference
(iv) any coherence between one set of waves and another cannot last/changes of phase/position of fringes varies so any pattern only lasts for a very short time
(b) signal (wave)
carrier (wave)
amplitude modulated (wave)
6. (a) diagram showing alpha source, gold foil, detector
(1 mark off for any omission)
four of these points:
fire α-particles at foil; vacuum; move detector; record counts;
backscattering $\rightarrow+$ ve/same charge as α;
few deflected \rightarrow nucleus small/most pass through so empty space
(b) spontaneous: not affected by anything (associated with the atom)
such as pressure/temperature/chemical combination
or does not require an external mechanism to cause it
random: impossible to predict when/which nucleus will decay
or direction of emission
(c) at the start the rate of decay is fixed or $\mathrm{dN} / \mathrm{dt}$ is -ve or λ const.
but subsequently the number of nuclei falls/halves
number decaying each hour falls or $\mathrm{dN} / \mathrm{dt}$ falls or $\mathrm{dN} / \mathrm{dt} \quad \mathrm{N}$
(d) (i) 1 in 1000 decay: 2.4×10^{15} present
2.4×10^{12} decay in an hour at the start
(ii) 10 half lives means $2.4 \times 10^{15} / 2^{10}$

$$
\begin{equation*}
=2.4 \times 10^{15} / 1024=2.34 \times 10^{12} \tag{1}
\end{equation*}
$$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9792	02

7. (a) looks like diffraction/interference/superposition and destructive/constructive pattern
this implies that electrons can be considered as a wave (function)
so they have dual properties/wave-particle duality
or may sometimes be considered as a particle and sometimes as a wave motion
(b) $(\lambda=h / p=) h / m v$ seen or used
$=6.63 \times 10^{-34} /\left(9.11 \times 10^{-31} \times 2.8 \times 10^{7}\right)$
$=2.60 \times 10^{-11} \mathrm{~m}$

Section B

8 (a) (i) 1. $800(\mathrm{~A})$
2. 350000 or $3.5 \times 10^{5}(\mathrm{~V})$
(ii) $(P=) V I$ seen or implied (in 1. or 2.)
$2.8 \times 10^{8}(\mathrm{~W})$ and 0
(iii) up and down graph - e.g. sawtooth, triangular wave - and number on axis
decent $\sin ^{2}$ graph with correct curvature at bottom
time period of bumps $=0.010 \mathrm{~s}$
(iv) horizontal line
horizontal line at $2.8 \times 10^{8} \mathrm{~W} /$ candidate's value
(v) reference to area under the graph
area under the graph is greater
(b) (i) 0.0107 m or 1.07 cm or 10.7 mm
(ii) $\pi\left(r_{1}^{2}-r_{2}^{2}\right)$ or $\pi\left(1.50^{2}-0.43^{2}\right)$ or $\pi\left(0.0150^{2}-0.0043^{2}\right)$
$6.49 / 6.50 \mathrm{~cm}^{2}$ or $6.49 / 6.50 \times 10^{-4} \mathrm{~m}^{2}$
(iii) $R=\rho \| A$ or $1.72 \times 10^{n} \times 5.8 \times 10^{n} / 6.49 \times 10^{n}$
$1.72 \times 10^{-8} \times 580000 / 6.49 \times 10^{-4}$ or $15.3 / 15.4 \Omega$
(iv) $(P=) I^{2} R$ or $800^{2} \times 15.3 / 15.4$

$$
\begin{equation*}
9.79 \text { - } 9.86 \text { MW } \tag{1}
\end{equation*}
$$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9792	02

(c) financial consequences:
high voltage transmission is cheapest/most efficient
d.c. voltage transformation expensive
transformation costs not cancelled by reduced transmission costs
d.c. transformation is less efficient

practicality:

d.c. transformation complicated intermediate tapping off difficult
spare parts less readily available/more expensive
circuit breakers less straightforward/expensive/straightforward
d.c. supply dangerous
less reliable (reduced availability)
domestic transformers (in chargers etc.) use a.c.
good communications (for multi-terminal systems)

reduced advantages:

short distances
skin effect/resistive losses unimportant over short distances
more cables not a problem
not in sea
different applications require different voltages or specific example
second specific example such as: electronics require $\sim 10 \mathrm{~V}$
small scale rectification to d.c. easy
thicker cables not a problem
capacitance/reactive/power loss small in air
dielectric losses small in air
other appropriate suggestions each
maximum for question $=7$
[Total: 25]

