MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9792 PHYSICS

9792/02
Paper 2 (Part A Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	$\mathbf{9 7 9 2}$	$\mathbf{0 2}$

c.a.o. correct answer only (including unit)
e.e.o.o. each error or omission
e.c.f. error carried forward:
it is usually awarded even where not specifically indicated.
i.e. subsequent working including a previous error is credited, if otherwise correct.

Incorrect units, errors in powers of 10 and unit multipliers are to be treated as arithmetical errors.

Correct numerical answers with incorrect units will normally gain preceding marks even when the working is not shown.

Do not penalise a sig. fig. fraction or a unit error more than once in the same question.
There is no penalty for taking $\mathrm{g}=10$ or $9.8\left(\mathrm{~ms}^{-2}\right)$ unless specifically stated.
Sig. Fig. Answers must given to at least 2 sig. fig. except where the answer is exactly $0.6,2$ etc.

1 (a) (i) area under graph (award in either (i) or (ii))
$1 / 2 \times 8 \times 16=64(\mathrm{~m})$
(ii) $1 / 2 \times 7 \times 10=35(\mathrm{~m})$
(b) estimates area of central section
e.g. 700 ± 20 small squares or $15 \times \sim 18.5$ and $5 \times \sim 15$
equivalent to $350 \mathrm{~m}+99 \mathrm{~m}=450 \pm 10(\mathrm{~m})$
(c) (i)

curve with gradient increasing to 23 s
distance increasing to 35 s and candidate's 450 m
with gradient decreasing
Penalise: sudden change of gradient / more than one line
(ii)

horizontal to 8 s
falling to zero at 23 s

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	9792	02

(d) at equal intervals along route
some mechanism for starting together
record time as bus passes
same point on bus (used for measurements)

2 (a) (i) volume $=53 \times 32 \times 1.3=\left(2205 \mathrm{~m}^{3}\right)$

$$
\begin{equation*}
\text { mass }=2205 \times 2400=5.29 \times 10^{6}(\mathrm{~kg}) \tag{1}
\end{equation*}
$$

(ii) weight $=5.29 \times 10^{6} \times 9.81=5.19 \times 10^{7}(\mathrm{~N})$
(iii) pressure $=$ weight $/$ area
$5.19 \times 10^{7} / 53 \times 32=30600\left(\mathrm{Nm}^{-2}\right)$
[2]
(b) building provides $(70-30.6)=39.4\left(\mathrm{kNm}^{-2}\right)$
mass of building is $39.4 \times 5.29 \times 10^{6} / 30.6=6.81 \times 10^{6}(\mathrm{~kg}) \quad$ (or the long way)

3 (a) acceleration of body $(=a)=(-) F / m$
use of $v^{2}=u^{2}+2$ as (condone use of signs wrongly and using $u=v$)
$F s=$ work done $=$ k.e. and substitution to get $m a s=m s v^{2} / 2 s=1 / 2 m v^{2}$
(integration methods acceptable)
(b) (i) $1 / 2 \times 1800 \times 8500^{2}=6.5 \times 10^{10}(\mathrm{~J})$
(ii) $6.5 \times 10^{10}=1800 \times 5300 \times \Delta \theta$
$\Delta \theta=6820(\mathrm{~K})$
(iii) (gravitational) potential (energy must be lost as well)
(iv) heat/energy lost from spacecraft by conduction to air
or heat due to/WD against air resistance/atmosphere or by radiation
less (net) energy gain leads to (less temperature rise) or net energy gain is less than actual energy gain

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	9792	02

4

I / A	P / W
3.0	0
2.4	2.9
2.0	4.0
1.5	4.5
1.2	$4.3(2)$
1.0	4.0
0.86	3.7
0.75	3.4
0.60	2.9
0.50	2.5

(a) both currents correct
(b) (i) suitable smooth curve
(ii) maximum at $R=2 \pm 0.2(\Omega)$
(iii) all the power (is wasted as heat) in the internal resistance
no power/energy to external resistor (as its value is zero so)
(iv) 1. total power supplied $=6 \mathrm{~V} \times 1.5 \mathrm{~A}=9.0$ (W) efficiency $=4.5 / 9.0=0.5$ (or 50%)
2. R for maximum fraction $=10(\Omega)$
[Total: 9]

5 (a) two points from:
a wave in which nodes and antinodes are set up
a wave made of two waves (of the same type and) of the same frequency (or wavelength),
travelling in opposite directions
a wave not transmitting/storing energy (1 each)
(2) [2]
(b) source (e.g. of microwaves)
reflector/fixed point to produce waves in opposite direction
adjustment of distances to set up nodes and antinodes
correct diagram of arrangement
(c) (i) the wavelength
(ii) -sin wave; labelled/thick horizontal line; sin wave (amplitude~70\%) (1 each)

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	$\mathbf{9 7 9 2}$	$\mathbf{0 2}$

6 (a) ${ }_{14}^{28} \mathrm{Si},{ }_{14}^{29} \mathrm{Si}$ and ${ }_{14}^{30} \mathrm{Si}$
(b) (i) ${ }_{12}^{27} \mathrm{Mg} \rightarrow{ }_{13}^{27} \mathrm{Al}+{ }_{-1}^{0} \beta$
beta particle correct (penalise β^{-}) equation balances
(ii) 12 protons become 13 protons and 15 neutrons become 14 neutrons (and an electron) or a neutron changes into a proton
a neutron changes into a proton and an electron/ β-particle (this scores both marks)
(1)
(c) ${ }_{15}^{29} \mathrm{P} \rightarrow{ }_{1}^{0} \mathrm{e} / \beta+{ }_{14}^{29} \mathrm{Si}$
correct symbol for positron (penalise β^{+}but not as well as β^{-})
correct equation
(1)
(d) half life for aluminium-29 is 6.6 (min)
time is 5 half lives so or 5 used correctly
activity $=4.8 \times 10^{5} / 2^{5}=1.5 \times 10^{4}(\mathrm{~Bq})$

7 (a) photoelectric (effect)
(b) (i) $E=h c / \lambda$ and knowing what the symbols stand for
$6.63 \times 10^{-34} \times 3.00 \times 10^{8} / 250 \times 10^{-9}=7.96 \times 10^{-19}(\mathrm{~J})$
(1)
[2]
(ii) $7.96 \times 10^{-19} / 1.60 \times 10^{-19}=4.97(\mathrm{eV})$
(c) $4.97 \mathrm{eV}-3.69 \mathrm{eV}=1.28(\mathrm{eV})$
(d)

graph/line for positive and negative values of V
constant current for most but not all positive values of V
becoming zero at -1.28 V or candidate's value from (c)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	9792	02

(e) lower intensity line with smaller values of current but becoming zero at same point
[2]
(f) any three of these four comments:
the wave theory makes intensity proportional to amplitude squared
so it was expected that a brighter lamp would give higher energy photoelectrons
here dim light is giving just as energetic photoelectrons as bright light
(1) $\max 3$
this cast doubt on the wave theory for electromagnetic radiation

8 (a) (i) 1. velocity/speed increases with time / rate of change of velocity/speed
2. $49(.0 / 1)$ and $200(196) \quad$ (n.b. unit given in question)
(ii) increasing gradient
initial gradient zero
clear attempt at correct final gradient or angle to vertical $\leq 20^{\circ}$
(b) (i) $54(.0) \mathrm{m}$ cao.
(ii) the aeroplane is travelling very/extremely fast or (large distance in) short time or time (for given distance) is inversely related to acceleration or the pilot has a short time (to clear the tailplane) pilot must miss the empennage/tailplane/clear the aeroplane etc.
(c) Momentum Conservation Method:
gas (emerges with) downwards momentum conservation of momentum
(rest of) seat/cylinders gains upwards momentum

Newton's Third Law Method:

downwards force on gas
upwards force (on cylinder/seat) (1)
force upwards greater than weight (1)
(d) (i) the pilot does not collide with/problem with the rotor blades
(ii) (the parachute has to) slow down a fast/downwards moving object or slow down in a short time
before the pilot hits the ground / pilot too low
(e) (i) Force, Impulse Method:

Velocity, Acceleration Method:
$(F=) 380 \times 10 \times 9.81 / 3.7(297) \times 10^{4}$
I = Ft or $1800 /(380 \times 10 \times 9.81)$
($v=$) 1800/380 or 4.7(36842105)
($\mathrm{t}=$) v / a
or $(t=)$ I/F or $1800 / 3.7(278) \times 10^{4}$
or $4.7(36842105) /(10 \times 9.81)$
$0.048(28585225)$ s (allowing for weight of pilot and seat) (0.0439 s scores $2 / 3$)
(ii) smaller acceleration/onset rate/force not jerk

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	9792	02

(f) financial consequences:
seats/helmets/parachutes/training expensive (to buy/install/maintain etc.) / not economically viable
seats heavy (much heavier than a passenger) or bulkier
fewer passengers/less income or more fuel

hazards:

passengers untrained/unaware of danger / hull needs to be breached
accidental operation possible
rocket fuel highly flammable
bolts/rocket ejecta etc hot/fast moving/dangerous
forces/acceleration causes injury
low oxygen pressure / cabin depressurized / low temperature
some passengers elderly/unfit/sick/children/babies/disabled/obese
flailing limbs/possessions/collisions cause injury

practicality:

entire aeroplane roof needs to be removed first
many passengers ejecting at once
most accidents occur on take-off/landing/low altitude
does not protect against all risks
civilian airliner less likely to be target/in danger/less likely to crash
delay before ejection
tail fin higher (in commercial jet)
seats designed for a particular weight / seats need to be adjusted for weight passengers belted up for the entire journey
(1) $[\max 7]$

