

Cambridge International Examinations Cambridge Pre-U Certificate

MATHEMATICS (STATISTICS WITH PURE MATHEMATICS) (SHORT COURSE)

1347/02

Paper 2 Statistics

For Examination from 2016

SPECIMEN MARK SCHEME

2 hours

MAXIMUM MARK: 80

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.

The following abbreviations may be used in a mark scheme:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- aef Any equivalent form
- art Answers rounding to
- cwo Correct working only (emphasising that there must be no incorrect working in the solution)
- ft Follow through from previous error is allowed
- o.e. Or equivalent

		$(4412)^2$	
1	(i)	$S_{xx} = 1939552 - \frac{(4412)^2}{13} = 442187$ (to nearest integer)	B1
		$S_{yy} = 605147 - \frac{(2387)^2}{13} = 166857$ (to nearest integer)	В1
		$S_{xy} = 1074848 - \frac{4412 \times 2387}{13} = 264737$ (to nearest integer)	B1
		$r = \frac{264737}{\sqrt{442187 \times 166857}} = 0.975 \ (0.9746)$	
		Calculating r from their S_{xx} , S_{yy} and S_{xy}	M1
		(numerical working or <i>their r</i> value correct to 3 sf or better) r is near 1, so a good fit to an upward sloping line	A1
		Drawing a valid conclusion (confirming that a linear fit is appropriate, as stated in question)	
	(ii)	$b = \frac{264737}{442187} = 0.599 \ (0.5987)$	M1
	(11)	Calculating b from their S_{xx} and S_{xy}	1,11
		$a = \frac{2387}{12} - 0.5987 \times \frac{4412}{12}$	M1
		Calculating a from $\sum x$, $\sum y$ and their b	
		$= 183.6 - 0.5987 \times 339.4 = -19.6$ y = 0.599x - 19.6	A1
		Line correct with coefficients to 3sf or better	Ai
		$x = 2203 \Rightarrow \hat{y} = 1300$ (From their line (± 2))	B1
	(iii)	Extrapolation beyond range of data	B1
		Any valid objection	B1
		Small sample / only based on one sample Sampling method not known / not random sampling	
		London is not typical / London 'is different'	
2	(i)	Median = 30 mpg CAO	B1
		Quartiles = 34 mpg and 23 mpg (Accept 33 to 35 and 20 to 24) IQR = 11 mpg (<i>their</i> IQR calculated)	B1 M1
		Outliers have mpg $< 6.5 \text{ or} > 50.5$	A1
		⇒ Toyota Prius	B1
	(ii)	Using median and quartile values appropriately to deduce non-normal	В1
		e.g. The difference between 23 and 30 is much greater than the difference between 30 and 34; this suggests that the distribution is not symmetric.	

	(iii)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
		1 2 12 3 4 5 6 7 8 11 9 10 13 14 15 0 0 -9 1 1 1 1 1 -1 2 2 0 0	
			3.71
		Substantially correct calculation of d or $ d $ or d^2 for the ranks	M1
		$\Sigma d^2 = 96$	A1
		$r_s = 1 - \frac{6 \times 96}{15 \times 224} = 1 - 0.17143 = 0.82857$	
		Substantially correct calculation of d or $ d $ or d^2 for the ranks	M1
			IVI 1
		= 0.829 (3 sf)	A1
3	(i)	Independence between children, (random sample)	B1
		class are typical of population in respect of left-handedness (Independence	B1
		Probability 13% (constant probability))	
	(ii)	X= number of left-handers	
	(11)	X = Hathlet of left-handers $X \sim B(20, 0.13)$	
		11 2(20, 0.12)	
		13% of $20 = 2.6$, so want $P(X \le 2)$	B1
		$(0.87)^{20} + 20(0.13)(0.87)^{19} + 190(0.13)^2(0.87)^{18}$	M1
		Calculating a probability in B(20, 0.13)	A1
		(At least) three correct probabilities added	
		= 0.061714 + 0.18443 + 0.26181	
		= 0.50795 = 0.508 to 3sf	A1
	(iii)	$X \sim B(20, p)$ $p = P(left-hander)$ (may be implied)	
		$H_0: p = 0.13$	B1
		$H_1: p > 0.13$	B1
		$\alpha = 5\%$ one-tailed test (Omission of p only penalised once. May	
		imply level of test and one-tailed)	
		Assuming H_0 , $X \sim B(20, 0.13)$	3.61
		$P(X \ge 7) = 1 - 0.9897 = 0.0103$	M1
		or $cv = 6$	M1
		0.0103 < 5% or $7 > 6Reject H0$	A1
		Reject 11 ₀	711
		Evidence supports claim, significantly more of the most recent twenty presidents	
		were left-handed than would be expected by chance. (must be in context)	B1
	(iv)	Any valid reason, either from context or addressing statistical variation	B1
	(11)	e.g. Schools trained pupils to write with their right hand in the past	וע
		Left-handedness was not recorded accurately in the past	
		Not random samples, could be due to sample variation	
		* *	

© UCLES 2013 1347/02/SM/16

4	(i)	$P(Z > z) = 0.01 \Rightarrow z = 2.326$ $P(Z < z) = 0.25 \Rightarrow z = -0.674$ (both values required for mark) Substantially correct method	B1 M1
		$2.326 = \frac{120 - \mu}{\sigma} \Rightarrow 120 - \mu = 2.326 \sigma$	
		$-0.674 = \frac{84 - \mu}{\sigma} \Rightarrow 84 - \mu = -0.674 \sigma$	
		Both correct for <i>their z</i> -values, one of which is positive and one negative	A1
		$\Rightarrow \mu = 92.1 \text{ CAO}$	B1
		σ = 12 CAO	B1
	(ii)	H ₀ : samples come from same populations H ₁ : S tend to have larger increases than N (S have smaller rank values than N) Appropriate statement of hypotheses	B1
		repropriate statement of hypotheses	
		One-tailed test, $\alpha = 5\%$ Rank sum for $S = 1 + 3 + 4 + 5 + 6 + 8$ $\Rightarrow W = 27$ $m = 6$ $n = 10$ \Rightarrow critical value for $W = 35$	M1 A1 B1
		Reject H ₀ (Correct conclusion, in context) At the 5% level the data support the claim that the increases are greater for the smokers than for the non-smokers	В1
	(iii)	For the smokers, $\sum x = 708 \Rightarrow \bar{x} = 118$	
	()	Estimate $\hat{\mu}_s = 118$ CAO	B1
		$\sum x^2 = 83864 \implies S_{xx} = 320 \implies s^2 = 64$ Sight of one of 83864, 320, 64, 8, 53.3 or 7.30	M1
		Estimate $\widehat{\sigma_s^2} = 64$ CAO	A1
	(iv)	$\overline{X} \sim N(\mu_s \frac{\sigma_s^2}{n})$ where $\widehat{\sigma_s} = 8$ and $n = 6$	
		Critical values in t(5) are ± 2.571	_
		Using t tables to find 2.571 or 2.447	B1
		Confidence interval is $118 \pm 2.571 \times \frac{8}{\sqrt{6}}$	M1
		Correct method for <i>their</i> "t" value and <i>their</i> \overline{x} , $\hat{\sigma}$ = 118 \pm 8.4 = [109.6, 126.4] (ft <i>their</i> values from part (iii))	A1

5			
	(i)	$x = 47 \rightarrow z = 0.667$; $x = 51 \rightarrow z = 2.0$ (z values may be implied)	B1
		$P(47 < X \le 51) = 0.9772 - 0.7477$ (may be implied)	M1
		Expected frequency = $0.2295 \times 100 = 22.95 \text{ AG}$	A1
	(ii)	Merge classes in tails to make expected frequencies at least 5	В1
		Weight <43 43–45 45–47 >47 Observed frequency 32 24 30 14 Expected frequency 25.23 24.77 24.77 25.23 (O-E) ² /E 1.82 0.02 1.10 5.00	
		Substantially correct calculation of X^2 (with or without merging)	M1
		X^2 calculated = art 7.94 CAO	A 1
		H_0 : N(45, 9) distribution H_1 : some other distribution	B1
		From tables, critical value = 7.815 CAO	B1
		Reject H_0 Data is not consistent with a $N(45, 9)$ distribution	B1
	(iii)	v = n - 1 = 4 - 1 = 3	B1
		No need to reduce degrees of freedom for parameters as not estimated from sample data	
	(iv) (a)	Variance cannot be estimated, midpoints cannot be found for first and last classes since boundaries are not known	B1
	(b)	Sign test or binomial test or equivalent (e.g. test proportion that are below 45)	B1
		H_0 : median = 45 α = 5% α = 45 two-tailed test	
		$Y =$ number of chicks with weight $\leq 45g$ Assuming H ₀ , $Y \sim B(100, 0.5)$	M1
		Approximate by N(50, 25) Critical values are $50 \pm 1.96 \times 5 = 50 \pm 9.8$ = [40.2, 59.8]	A1
		Observed $y = 56$ (or 44 above)	
		Accept H_0 Data are consistent with a distribution with median = 45. No evidence that median is not 45	B1

© UCLES 2013 1347/02/SM/16

	1		
6	(i)	$X \sim N(10, 9)$ approx	
		Correct mean	M1
		Correct variance	A1
		their mean + $1.645 \times their$ sd (with or without continuity correction)	M1
		Critical value = $10 + 1.645 \times 3 + 0.5$	
		= 14.935 + 0.5	
		= 15.435	
		Critical value = 16	A1
		If the number observed is 15 or fewer, accept H_0 and conclude that p may be 0.10	B1
		If number observed is 16 or more, reject H_0 and conclude that p is probably greater	
		than 0.10	
		P(Type I error)	B1
		$= P(\text{reject } H_0 \text{ when it is true})$	
		(ft their integer cv of 16 or 15)	
		$= P(X \ge 16) \text{ in B}(100, 0.10)$	M1
		$= P(X \ge 15.5)$ in N(10, 9) approx.	
		$= P(Z \ge (15.5 - 10)/3) = P(Z \ge 1.833) = 1 - 0.9666$	A1
		= 0.0334	
	(ii)	P(Type II error) = P(accept H ₀ when it is false) = $P(X \le 15)$ in B(100, 0.20)	B1
		B(100, 0.20) or N(20, 16) used	M1
		$= P(X \le 15.5)$ in N(20, 16) approx.	
		ft <i>their</i> integer cv of 16 or 15	
		$= P(Z \le (15.5 - 20)/4) = P(Z \le -1.125) = 1 - 0.8696$	A1
		= 0.1304	
	(***)	0.14 × 0.86	D.1
	(iii)	$P \sim N(0.14, \frac{0.14 \times 0.86}{100})$	B1
		= N(0.14, 0.001204) approx.	
		Correct method for <i>their</i> distribution	M1
		95% CI = $0.14 + 1.96\sqrt{0.001204}$	1711
		$= 0.14 \pm 0.068 = [0.072, 0.208]$ Correct interval, in any form, with or	A1
		without an attempt at continuity	711
		0.10 and 0.20 are both in this interval	B1
			<i>D</i> 1

© UCLES 2013 1347/01/SM/16

BLANK PAGE

© UCLES 2013 1347/02/SM/16