

Cambridge International Examinations Cambridge Pre-U Certificate

MATHEMATICS (STATISTICS WITH PURE MATHEMATICS) (SHORT COURSE)

1347/01

Paper 1 Pure Mathematics

For Examination from 2016

SPECIMEN MARK SCHEME

1 hour 45 minutes

MAXIMUM MARK: 65

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.

The following abbreviations may be used in a mark scheme:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- aef Any equivalent form
- art Answers rounding to
- cwo Correct working only (emphasising that there must be no incorrect working in the solution)
- ft Follow through from previous error is allowed
- o.e. Or equivalent

		T	
1	(i)	$[y = (x-3)^2 - 11]$ $a = 3$ $b = 11$	B1 B1
	(ii)	$ \begin{array}{l} -11 (their -b) \\ x = 3 (their a) \end{array} $	B1ft B1ft
	(iii)	Translation 3 in <i>x</i> -direction, 11 in negative <i>y</i> -direction (ft on <i>a</i> , <i>b</i>)	M1 A1ft
2	(i)	One correct term $y' = 10x - 3x^2$	M1 A1
	(ii)	Substitute $x = 4$ to get numerical answer $m = -8$ Through $(4, 9)$ y = -8x + 41	M1 B1 A1
3		At least one ${}^{n}C_{r}$, x^{5} and 2^{5} Both expansions fully correct $64 + 160x^{2} + 20x^{4}$ (Fully simplified answer, can imply M1 A1 cwo)	M1 A1 A1
4		Integrate to get at least 1 correct term Both x terms correct and + c or equivalent Use $x = 2$, $y = 19$ to find c $y = 2x^2 + 3x + 5$ (Allow " $c = 5$ " if $y = 2x^2 + 3x + c$ seen)	M1 A1 M1 A1
5		One law of logs correctly applied Another law correctly applied $\ln\left(\frac{(x+1)(x-1)}{x^2}\right) \text{ aef}$	M1 A1
6		Differentiate at least one term correctly $ \frac{dC}{dt} = 800 - 20000t^{-2} \text{ aef} $ = 0 and solve to get $t = 5$ (or -5 , ignore) Substitute into C equation to get (£)8000 and no other solution Correctly show minimum, cwo E.g. $ \frac{d^2C}{dt^2} = 40000t^{-3} > 0 $	M1 A1 A1 A1 B1
7	(i)	xy = 12000, $x + y = 230Both equations, allow 2x + 2y = 460Algebraic method for solutionx(230 - x) = 12000x^2 - 230x + 12000 = 0150$ or 80 (At least one solution) Dimensions 150×80 CAO	B1 M1 A1 A1
	(ii)	Quadratic equation with P or equiv (e.g. $q = P/2$) Correct quad = 0, e.g. $2x^2 - Px + 24000 = 0$ $q^2 \ge 4 \times 12000$ $P = 2q \ge 2\sqrt{48000} = 80\sqrt{30}$ Correct quad = 0, e.g. $2x^2 - Px + 24000 = 0$ Correctly obtain AG, $P \ge 80\sqrt{30}$, "cannot be less than" must be justified	M1 A1 M1

_			
8	(i)	Turn into $x^4 - 10x^2 + 9 = 0$ o.e. Solve quadratic in x^2 $(x^2 - 1)(x^2 - 9) = 0$	B1 M1
			Λ 1
		$x = 1, 3, \mathbf{AG}$ -1, -3 and nothing else	A1 A1
		-1, -3 and nothing cisc	Al
	(ii)	Attempt to integrate function, limits 1 and 3	M1
		310 9 dr	
		$\int_{1}^{3} \frac{10}{x} - \frac{9}{x^{3}} dx$	
		(Correct indefinite integral, allow $(9/2)x^{-2}$)	
		$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$	B1
		$= \left[10\ln x + \frac{9}{2x^2}\right]_1^3$	DI
		$\int_{1}^{3} x dx = 4, \text{ e.g. trapezium}$	M1
		Difference = $10\ln 3 - 8$	A1
		Final answer, any <i>exact</i> equivalent, not negative	A1
9	(a)	$15+15\times\frac{2\times4}{5}++15\times\frac{5\times1}{5}$	
		Evidence for at least 2 correct terms, added	M1
		= 105 CAO	A1
	(b)(i)	a = 15	B1
		b = 1.04 (Allow 1.040001 or more SF)	B1
	(ii)	$ln(20/15) \div ln(1.04)$ Use ln correctly, their a, b	M1
	(12)	= 7.33 or 7 years 4 months or better	A1
		[T&I: 7.33 or 7y 4m or better: B2, else B0]	
		$a = (\ln 1.04)t$	3.64
	(iii)	$15e^{(\ln 1.04)t}$	M1
		or $c = their\ a, k = \ln\ (their\ b)$ or decimals to 3 SF Correctly differentiate ce^{kt} , numerical c, k	M1 M1
		In range $[0.784, 0.785]$ or $\times 1000$ or $20k$ ft	A1ft
		in range (o./o i, o./ob) of Tool of Zoiv is	71110
10	(i)	(4, 5) (Must be simplified)	B1
	(ii)	Grad AC = 2,	B1
	(11)	so grad $BD = -\frac{1}{2} \left(-\frac{1}{(\text{their } m_{AC})}\right)$	M1
		$y = -\frac{1}{2}x + 7 \text{ aef}$	A1
	(iii)	Solve simultaneously (Needs correct substitution/elimination)	M1
		B(-2, 8)	A1
		D(10, 2) (Allow A1 A0 for two correct coordinates)	A1
		(2 thow 211 2 to 101 two contect coordinates)	
	(iv)	Use Pythagoras once correctly	M1
		$AC = \sqrt{(4^2 + 8^2)} [= \sqrt{80}], BM = \sqrt{(6^2 + 3^2)} [= \sqrt{45}]$ Both answers exact (can be	A1
		implied)	M1
		Multiply answers, allow \times 2 or \times $\frac{1}{2}$	A1
		= 60 cwo	

© UCLES 2013 1347/01/SM/16