UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Level 3 Pre-U Certificate Short Course ### **MATHEMATICS (STATISTICS WITH PURE MATHEMATICS)** 1347/02 Paper 2 Statistics May/June 2012 2 hours Additional Materials: Answer Booklet/Paper **Graph Paper** List of Formulae (MF21) ### **READ THESE INSTRUCTIONS FIRST** If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid. Answer all the questions. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an electronic calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80. This document consists of **6** printed pages and **2** blank pages. 1 The table below shows a sample from the Home Office statistics on the breaching of anti-social behaviour orders (ASBOs), in 13 police areas, between 1 June 2000 and 31 December 2009. | Police area | ASBOs issued, x | ASBOs breached, y | |-----------------------------|-----------------|-------------------| | Avon and Somerset | 350 | 187 | | Bedfordshire | 176 | 73 | | Cambridgeshire | 196 | 86 | | Derbyshire | 250 | 131 | | Essex | 287 | 169 | | Gloucestershire | 132 | 80 | | Hampshire and Isle of Wight | 551 | 347 | | Lancashire | 675 | 428 | | Merseyside | 712 | 357 | | Norfolk | 229 | 112 | | South Wales | 360 | 160 | | Thames Valley | 334 | 168 | | Warwickshire | 160 | 89 | Source: http://www.homeoffice.gov.uk/ $$n = 13$$, $\Sigma x = 4412$, $\Sigma x^2 = 1939552$, $\Sigma y = 2387$, $\Sigma y^2 = 605147$, $\Sigma xy = 1074848$. It is believed that there is a linear relationship between the number of ASBOs issued and the number breached. - (i) Calculate the values of S_{xx} , S_{yy} and S_{xy} , giving each correct to the nearest integer, and hence show that a linear model is appropriate for the data. [5] - (ii) Calculate the equation of the regression line of *y* on *x*, and use it to predict the number of ASBOs breached in Greater London where there were 2203 ASBOs issued between 1 June 2000 and 31 December 2009. - (iii) The actual number of ASBOs breached in Greater London was 1066. Give two distinct reasons that could explain why the prediction was unreliable. [2] © UCLES 2012 1347/02/M/J/12 2 The table shows fuel economy figures in miles per gallon (mpg) for some new cars. | Make and model | City (mpg) | Rank | Motorway (mpg) | Rank | |---------------------|------------|------|----------------|------| | Toyota Prius | 54 | 1 | 48 | 1 | | Honda Insight | 40 | 2 | 43 | 2 | | Honda CR-Z | 35 | 3 | 31 | 12 | | Volkswagen Golf | 34 | 4 | 42 | 3 | | Audi A3 | 33 | 5 | 41 | 4 | | Volkswagen Jetta | 32 | 6 | 40 | 5 | | Ford Fiesta SFE FWD | 31 | 7 | 39 | 6 | | Mini Cooper | 30 | 8 | 37 | 7 | | Toyota Yaris | 27 | 9 | 36 | 8 | | Nissan Versa | 26 | 10 | 32 | 11 | | Hyundai Sonata | 24 | 11 | 35 | 9 | | Honda Accord | 23 | 12 | 34 | 10 | | Kia Rondo | 20 | 13 | 27 | 13 | | Subaru Impreza | 17 | 14 | 23 | 14 | | Aston Martin DB7 | 11 | 15 | 17 | 15 | Source: http://www.fueleconomy.gov (adapted) - (i) Find the median and quartiles for the mpg of these fifteen cars under city driving conditions and use these values to identify any cars for which the mpg under city driving conditions is an outlier. - (ii) Explain why the calculations in part (i) suggest that the mpg values do not come from a normal distribution. - (iii) Calculate the value of Spearman's rank correlation coefficient between the mpgs for these cars under the two driving conditions. [4] - 3 A survey into left-handedness found that 13% of the population of the world are left-handed. - (i) State the assumptions necessary for it to be appropriate to model the number of left-handed children in a class of 20 children using the binomial distribution B(20, 0.13). [2] - (ii) Assuming that this binomial model is appropriate, calculate the probability that fewer than 13% of the 20 children are left-handed. [4] A leading academic claims that there are significantly more left-handed people in high-status jobs than would be expected. Seven of the twenty most recent presidents of the United States of America have been left-handed. (iii) Test whether this result supports the academic's claim, assuming that a binomial model is valid. Use a 5% level of significance for the test and use values from the statistical table below. [6] Only one of the first twenty presidents of the United States of America was left-handed. (iv) Give a reason that could explain why the number of left-handed presidents in the first twenty is much lower than for the most recent twenty. [1] #### **CUMULATIVE BINOMIAL PROBABILITIES** | n = 20 | p = 0.13 | |--------------|----------| | <i>x</i> = 4 | 0.8917 | | 5 | 0.9630 | | 6 | 0.9897 | | 7 | 0.9976 | | 8 | 0.9995 | © UCLES 2012 1347/02/M/J/12 - When people exercise, their heart rate increases. Suppose that, for the population as a whole, increases in heart rate follow a normal distribution, $N(\mu, \sigma^2)$. You are given that only 1% of the population have an increase that is more than 120, while 25% of the population have an increase that is less than 84. - (i) Calculate the values of μ and σ that are consistent with this information. [5] An investigation was carried out into the effects of smoking on health. The heart rates of 16 volunteers were measured before and after exercise, and the increases in heart rate were recorded. After the data had been collected the volunteers revealed whether they were smokers or not. The results are given below. | Volunteer
number | Age | Male or female | Increase in heart rate | Smoker
or not | | |---------------------|-----|----------------|------------------------|------------------|--| | 1 | 30 | F | 132 | Smoker | | | 2 | 18 | F | 122 | Not | | | 3 | 20 | M | 120 | Smoker | | | 4 | 18 | M | 118 | Smoker | | | 5 | 17 | F | 116 | Smoker | | | 6 | 17 | F | 114 | Smoker | | | 7 | 27 | M | 110 | Not | | | 8 | 29 | M | 108 | Smoker | | | 9 | 20 | M | 106 | Not | | | 10 | 26 | F | 98 | Not | | | 11 | 25 | M | 88 | Not | | | 12 | 32 | M | 84 | Not | | | 13 | 29 | F | 80 | Not | | | 14 | 17 | F | 72 | Not | | | 15 | 31 | F | 64 | Not | | | 16 | 21 | M | 60 | Not | | (ii) The volunteers have been ranked by increase in heart rate, with the largest increase having rank 1. Carry out a Wilcoxon rank-sum test, at the 5% level, to test whether the increases in heart rate are greater for smokers than for non-smokers. Now consider just the population of all smokers. - (iii) Calculate unbiased estimates of the mean and variance increase in heart rate for the population of all smokers. [3] - (iv) Assuming that increases in heart rate for the population of all smokers follow a normal distribution, $N(\mu_s, \sigma_s^2)$, calculate an approximate 95% confidence interval for μ_s . [3] 5 The table shows the weights, x grams, of 100 cockatiel chicks two weeks after they were hatched. | X | <i>x</i> ≤ 39 | $39 < x \le 43$ | $43 < x \le 45$ | $45 < x \le 47$ | $47 < x \le 51$ | 51 < x | |------------------|---------------|-----------------|-----------------|-----------------|-----------------|--------| | Number of chicks | 5 | 27 | 24 | 30 | 12 | 2 | It has been claimed that the weights follow a normal distribution with mean 45 and variance 9. The expected frequencies from this distribution, correct to 2 decimal places, are as follows. | x | <i>x</i> ≤ 39 | $39 < x \le 43$ | $43 < x \le 45$ | $45 < x \le 47$ | $47 < x \le 51$ | 51 < x | |--------------------|---------------|-----------------|-----------------|-----------------|-----------------|--------| | Expected frequency | 2.28 | 22.95 | 24.77 | 24.77 | 22.95 | 2.28 | - (i) Show how the expected frequency for $47 < x \le 51$ was calculated. [3] - (ii) Use a χ^2 goodness of fit test at the 5% level with 3 degrees of freedom to test whether the sample is consistent with a N(45, 9) distribution. [6] - (iii) Explain why 3 degrees of freedom were used in the goodness of fit test. [1] Suppose that it was known that the weights should follow a normal distribution. It is wanted to test whether the sample is consistent with the distribution having a mean of 45. - (iv) (a) Explain what difficulty would arise in attempting to carry out a χ^2 goodness of fit test. [1] - (b) Name an alternative test that could be used, and carry out this test at the 5% level of significance. [4] - 6 The authors of a report claim that the likelihood of a certain river flooding its banks in any year is 10%. The report gives the number of years over the last century in which the river has flooded. Let X represent the number of years, out of one hundred, in which the river floods. The authors of the report assume that X can be modelled using the distribution B(100, p), where p is the probability that the river floods in a year. A group of residents who live near the river say that the likelihood quoted in the report is too small. They want to test this at the 5% level using H_0 : p = 0.10 against H_1 : p > 0.10. (i) Use a normal approximation to the binomial distribution to find the critical value for the test. State how the residents should use this critical value to interpret the data. Calculate the probability that a Type I error occurs. [8] It is later found that the likelihood of the river flooding should have been given as 20%. (ii) Calculate the probability that, when the residents carried out their test, a Type II error occurred. [3] The data that the authors of the report made available showed that the river had flooded in 14 of the last hundred years. (iii) Use this result to calculate a 95% confidence interval for *p* and show that both 10% and 20% fall within the confidence interval. [4] © UCLES 2012 1347/02/M/J/12 # **BLANK PAGE** ## **BLANK PAGE** # Copyright Acknowledgements: Question 1 © ADAPTED: http://www.homeoffice.gov.uk. Question 2 © ADAPTED: http://www.fueleconomy.gov. Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.