

Cambridge International Examinations Cambridge Pre-U Certificate

## **MATHEMATICS (PRINCIPAL)**

Paper 3 Applications of Mathematics SPECIMEN MARK SCHEME 9794/03 For Examination from 2016

2 hours

## **MAXIMUM MARK: 80**

The syllabus is approved in England, Wales and Northern Ireland as a Level 3 Pre-U Certificate.

This document consists of 6 printed pages.



[Turn over

www.theallpapers.com

## Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.

The following abbreviations may be used in a mark scheme:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- aef Any equivalent form
- art Answers rounding to
- cwo Correct working only (emphasising that there must be no incorrect working in the solution)
- ft Follow through from previous error is allowed
- o.e. Or equivalent

| · · · · · · |         |                                                                                                    |          |
|-------------|---------|----------------------------------------------------------------------------------------------------|----------|
| 1           | (i)     | $z = \frac{27 - 24}{4} = 0.75$                                                                     | B1       |
|             |         | P(X > 27) = P(Z > 0.75)                                                                            | M1       |
|             |         | = 0.2266                                                                                           | A1       |
|             | (ii)    | $P(X \le 25) - P(X \le 20) = P(Z \le 0.25) - P(Z \le -1)$                                          | M1       |
|             |         | 0.5987 - (1 - 0.8413)                                                                              | M1       |
|             |         | 0.44                                                                                               | A1       |
| 2           | (a) (i) | 75 - x + x + 130 - x = 170                                                                         |          |
|             |         | x = 35 (Finding the intersection)                                                                  | M1       |
|             |         | State 75 – 35 o.e.                                                                                 | A1       |
|             |         | $\frac{40}{200}$ o.e.                                                                              | A1       |
|             |         |                                                                                                    |          |
|             | (ii)    | Use conditional probability                                                                        |          |
|             |         | their 35<br>their 130                                                                              | M1       |
|             |         |                                                                                                    |          |
|             |         | $\frac{35}{130}$ o.e.                                                                              | A1       |
|             | (b) (i) | Recognise combination problem                                                                      | M1       |
|             |         | $^{15}C_7 = \frac{15!}{8!7!}$                                                                      |          |
|             |         | 8!7!<br>= 6435                                                                                     | A1       |
|             | (ii)    | ${}^{6}C_{2} \times {}^{9}C_{5}$ correct method                                                    | M1       |
|             |         | =1890                                                                                              | A1       |
|             | (iii)   | $(6M \ 1C) + (5M \ 2C) + (4M \ 3C)$ correct method                                                 | M1       |
|             |         | ${}^{6}C_{6} \times {}^{9}C_{1} + {}^{6}C_{5} \times {}^{9}C_{2} + {}^{6}C_{4} \times {}^{9}C_{3}$ | M1       |
|             |         | 1485                                                                                               | A1       |
| 3           | (i)     | Median = 30 mpg                                                                                    | B1       |
| 5           | (1)     | Quartiles = 34 mpg and 23 mpg                                                                      | B1<br>B1 |
|             | (ii)    | IQR = 11  mpg                                                                                      | M1       |
|             | (11)    | Outliers have mpg $< 6.5$ or $> 50.5$                                                              | A1       |
|             |         | Car A                                                                                              | B1       |
|             |         |                                                                                                    | DI       |

[Turn over

|   |       |                                                                                                         | D1       |
|---|-------|---------------------------------------------------------------------------------------------------------|----------|
| 4 | (i)   | Independence between children                                                                           | B1       |
|   |       | Class is typical of population in respect of left-handedness                                            | B1       |
|   | (ii)  | 13% of 20 = 2.6, so want $P(X \le 2)$                                                                   | B1       |
|   |       | $(0.87)^{20} + 20(0.13)(0.87)^{19} + 190(0.13)^2(0.87)^{18}$<br>At least one probability in B(20, 0.13) | M1       |
|   |       | = 0.061714 + 0.18443 + 0.26181                                                                          | A1       |
|   |       | = 0.50795 = 0.508 to 3sf                                                                                | A1       |
| 5 | (i)   | Table shows (-1, 0.7)<br>(0, 0.25) and (9, 0.05)                                                        | B1<br>B1 |
|   | (ii)  | Use $E(X)$ formula                                                                                      | M1       |
|   |       | Obtain –0.25 AG                                                                                         | A1       |
|   |       | Use $E(X^2)$ formula                                                                                    | M1       |
|   |       | Obtain 4.6875 (or 4.69) o.e.                                                                            | A1       |
|   | (iii) | Use $10 + 10E(X)$                                                                                       | M1       |
|   |       | Obtain $10 + 10(-0.25) = 7.5$                                                                           | A1       |
|   | (iv)  | P(Must win at least one game)                                                                           | M1       |
|   |       | States (0.25) <sup>10</sup>                                                                             | B1       |
|   |       | Obtain $1 - (0.95)^{10} + (0.25)^{10} = 0.401$                                                          | A1       |
| 6 | (i)   | x = 7<br>y = 24 (award B1 only if not identified)                                                       | B1<br>B1 |
|   | (ii)  | $r^2 = 7^2 + 24^2$                                                                                      | M1       |
|   |       | Magnitude is 25 N                                                                                       | A1       |
|   |       | $\tan\theta = \frac{24}{7}$                                                                             | M1       |
|   |       | Angle is 73.7°                                                                                          | A1       |
| 7 | (i)   | v = t(t-4)(t-5)                                                                                         | M1       |
|   |       | t = 4  and  5                                                                                           | A1       |
|   | (ii)  | $x = \frac{t^4}{4} - 3t^3 + 10t^2 + c$                                                                  | M1       |
|   |       | All terms correct including " $+ c$ "                                                                   | A1       |
|   |       | When $x = 0$ , $t = 0$ therefore $c = 0$                                                                | A1       |
|   |       | When $t = 2$ , $x = 4 - 24 + 40 = 20$                                                                   | A1       |

| 8 | (i)   | $P - 1050 = 18000 \times 0.3$                           | M1 |
|---|-------|---------------------------------------------------------|----|
|   |       | <i>P</i> = 6450                                         | A1 |
|   | (ii)  | New acceleration $6450 - 2850 = 18000a$                 | M1 |
|   |       | A = 0.2                                                 | A1 |
|   | (iii) | $6450 - 450 - T = 8000 \ (0.2)$                         | M1 |
|   |       | T = 4400  N                                             | A1 |
| 9 | (i)   | COM: $1 \times 14 + 2 \times 0 = U + 2V$                | B1 |
|   |       | NEL: $V - U = 0.5(14 - 0)$                              | B1 |
|   |       | $U = 0 \text{ ms}^{-1}$                                 | B1 |
|   |       | $V = 7 \text{ ms}^{-1}$                                 | B1 |
|   | (ii)  | $COM: 2 \times 7 + 5 \times 0 = 2U + 5V$                | B1 |
|   |       | NEL: $V - U = 0.5(7 - 0)$                               | B1 |
|   |       | $U = -0.5 \text{ ms}^{-1}$                              | B1 |
|   | (iii) | $V = 3 \text{ ms}^{-1}$                                 | B1 |
|   |       | <i>B</i> reaches <i>A</i> in 2 seconds                  | B1 |
|   |       | Distance between A and C is $1 + 2 \times 3 = 7$ metres | B1 |

| 10 | (i)   | As system is in equilibrium, tension in string is $T = mg$                                     | B1 |
|----|-------|------------------------------------------------------------------------------------------------|----|
|    |       | Resolving at right angles to the plane : $R + T \sin \alpha = 2mg \cos \alpha$                 | M1 |
|    |       | giving $R = mg (2 \cos \alpha - \sin \alpha)$ AG                                               | A1 |
|    | (ii)  | By implication $\alpha \le 45^{\circ}$                                                         | M1 |
|    |       | $\cos \alpha \ge \frac{1}{\sqrt{2}}; \sin \alpha \le \frac{1}{\sqrt{2}}$                       | A1 |
|    |       | $R \ge mg\left(\frac{2}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right)$ AG                              | A1 |
|    | (iii) | Resolving up the slope $F = 2mg \sin \alpha - T \cos \alpha = mg(2 \sin \alpha - \cos \alpha)$ | M1 |
|    |       | For this to be non-negative                                                                    | A1 |
|    |       | and combined with first line of solution to (ii) $0.5 \le \tan \alpha \le 1$ AG                | A1 |
|    | (iv)  | Using $F = \mu R$                                                                              | M1 |
|    |       | $\mu = \frac{2\sin\alpha - \cos\alpha}{2\cos\alpha - \sin\varepsilon} = \frac{2t - 1}{2 - t}$  | A1 |
|    |       | Max value of $\mu$ is 1 when $t = 1$                                                           | A1 |