

## Cambridge International Examinations Cambridge Pre-U Certificate

**MATHEMATICS (PRINCIPAL)** 

9794/02

Paper 2 Pure Mathematics 2

For Examination from 2016

SPECIMEN MARK SCHEME

2 hours

**MAXIMUM MARK: 80** 

The syllabus is approved in England, Wales and Northern Ireland as a Level 3 Pre-U Certificate.



## **Mark Scheme Notes**

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.

The following abbreviations may be used in a mark scheme:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- aef Any equivalent form
- art Answers rounding to
- cwo Correct working only (emphasising that there must be no incorrect working in the solution)
- ft Follow through from previous error is allowed
- o.e. Or equivalent

| 1 | (a) (i) | $\log_a 15$                                                                             | B1 |
|---|---------|-----------------------------------------------------------------------------------------|----|
|   | (ii)    | Use $b \log a = \log a^b$ at least once                                                 | M1 |
|   |         | Use $\log a - \log b = \log \frac{a}{b}$                                                | M1 |
|   |         | Obtain $\log_b \frac{1}{2}$                                                             | A1 |
|   | (b)     | $\frac{1}{3}$                                                                           | B1 |
|   |         | $\frac{1}{3a^2}$ o.e.                                                                   | B1 |
|   | (c)     | Attempt to multiply numerator and denominator by $2\sqrt{3} + 3$                        | M1 |
|   |         | Obtain $\frac{18 + 7\sqrt{3} - 3}{12 - 9}$                                              | A1 |
|   |         | Obtain given answer                                                                     | A1 |
| 2 |         | $\frac{1}{2}x(x+2)\sin 30^\circ = 12 \text{ or simplified expression}$                  | B1 |
|   |         | Rearrange to get a quadratic equation including putting $\sin 30^{\circ} = \frac{1}{2}$ | M1 |
|   |         | Obtain $x^2 + 2x - 48 = 0$                                                              | A1 |
|   |         | Solve their quadratic equation                                                          | M1 |
|   |         | Obtain $x = 6$ only                                                                     | A1 |
| 3 | (i)     | Attempt to find gradient                                                                | M1 |
|   |         | Get gradient $-\frac{1}{4}$                                                             | A1 |
|   |         | Find <i>c</i> to be 3 $(y = -\frac{1}{4}x + 3)$                                         | A1 |
|   | (ii)    | $-\frac{1}{4} \times -4 = 1$                                                            | B1 |
|   |         | No, gradients multiplied together $\neq -1$                                             | B1 |

| 4 | (i)   | Compare coefficients                                                                | M1       |
|---|-------|-------------------------------------------------------------------------------------|----------|
|   |       | Obtain $a = 2$ and $b = \frac{-5}{2}$                                               | A1       |
|   |       | Obtain $c = \frac{-31}{2}$                                                          | A1       |
|   |       | State $\left(\frac{5}{2}, \frac{-31}{2}\right)$                                     | A1       |
|   | (ii)  | Use quadratic formula in $x^2$                                                      | M1       |
|   |       | Obtain $x^2 = \frac{9}{4}$ and $x^2 = 1$                                            | A1       |
|   |       | Obtain $x = \pm \frac{3}{2}$ and $x = \pm 1$                                        | A1       |
| 5 | (i)   | P = 2r + 2rx                                                                        | B1       |
|   |       | $A = r^2 x$                                                                         | B1       |
|   | (ii)  | $P = 20 \text{ implies } r = \frac{10}{1+x}$                                        | M1       |
|   |       | so $A = \left(\frac{10}{1+x}\right)^2 x = \frac{100x}{(1+x)^2}$ AG                  | A1       |
|   | (iii) | Use quotient rule                                                                   | M1       |
|   |       | $\frac{dA}{dx} = \frac{100(1+x)^2 - 200x(1+x)}{(1+x)^4} = \frac{100(1-x)}{(1+x)^3}$ | A1       |
|   |       | Set equal to zero and find $x = 1$                                                  | A1       |
|   |       | Show with first differential test that it is maximum. o.e.                          | M1<br>A1 |
| 6 | (i)   | Attempt to solve $c = 1$ for at least one drug, and obtain a solution               | M1       |
|   |       | Obtain 54.9 (hours) for Antiflu                                                     | A1       |
|   |       | Obtain 23.0 (hours) for Coldcure                                                    | A1       |
|   | (ii)  | Two decaying exponentials in the first quadrant                                     | B1       |
|   |       | Correct intercepts on the <i>c</i> -axis                                            | B1       |
|   |       | Crossing over at a value of $t < 23$                                                | B1       |
|   | (iii) | Assume additive nature of the concentrations                                        | M1       |
|   |       | $5e^{-0.07\times30} + 5e^{-0.07\times10} = 3.10$                                    | A1       |

| 7 |      | Separate variable prior to integration                                                                                                   | M1       |
|---|------|------------------------------------------------------------------------------------------------------------------------------------------|----------|
|   |      | $\int \frac{1}{\sec y}  \mathrm{d}y = \int \frac{1}{x^2}  \mathrm{d}x$                                                                   | A1       |
|   |      | $\sin y = -\frac{1}{x}  (+c)$                                                                                                            | A1       |
|   |      | Substitute in $y = \frac{\pi}{6}$ and $x = 4$ to get $c = \frac{3}{4}$                                                                   | M1<br>A1 |
|   |      | $y = \sin^{-1}\left(\frac{3}{4} - \frac{1}{x}\right) \text{ o.e.}$                                                                       | A1       |
| 8 | (i)  | Either $\frac{dy}{dt} = 2e^{2t} - 3$ or $\frac{dx}{dt} = 2e^{2t} - 5$                                                                    | B1       |
|   |      | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} \text{ used}$                    | M1       |
|   |      | $= \frac{2e^{2t} - 3}{2e^{2t} - 5}$                                                                                                      | A1       |
|   | (ii) | Substitute $t = 0$ to obtain gradient $= \frac{-1}{-3}$ or equivalent                                                                    | B1       |
|   |      | Obtain $x = 1$                                                                                                                           | B1       |
|   |      | Obtain $y = 1$                                                                                                                           | B1       |
|   |      | Form equation of a straight line                                                                                                         | M1       |
|   |      | Obtain $3y - x = 2$                                                                                                                      | A1       |
| 9 | (i)  | Find $\mathbf{a} - \mathbf{b}$ or $\mathbf{b} - \mathbf{a}$                                                                              | M1       |
|   |      | Use correct method to find the magnitude of any vector                                                                                   | M1       |
|   |      | $\sqrt{154}$ or equivalent                                                                                                               | A1       |
|   | (ii) | Attempt $\cos \theta = \frac{\overrightarrow{AO}.\overrightarrow{AB}}{\left \overrightarrow{AO}\right \left \overrightarrow{AB}\right }$ | M1       |
|   |      | Obtain 70 anywhere                                                                                                                       | B1       |
|   |      | Obtain $\frac{70}{\sqrt{45}\sqrt{154}}$                                                                                                  | A1       |
|   |      | Obtain 32.8°                                                                                                                             | A1       |

|    | 1    |                                                                                     |          |
|----|------|-------------------------------------------------------------------------------------|----------|
| 10 | (i)  | Attempt to use product rule                                                         | M1       |
|    |      | $y' = ae^{ax}\cos bx - be^{ax}\sin bx$                                              | A1       |
|    |      | Set $y' = 0$ and rearrange                                                          | M1       |
|    |      | $\tan bx = \frac{a}{b} \text{ validly obtained}$                                    | A1       |
|    | (ii) | Model 1 Correct method to solve $\tan 15x = -\frac{1}{15} \Rightarrow x = -0.00444$ | M1       |
|    |      | Obtain $y = 1.0022$                                                                 | A1       |
|    |      | Correct method to solve $x + \frac{\pi}{15} = 0.20499$                              | M1       |
|    |      | Obtain $y = -0.81284$<br>State when $x = 0.3$ $y = -0.156$                          | A1<br>B1 |
|    |      | $\underline{\text{Model 2 Obtain } f + g = 1}$                                      | B1       |
|    |      | Obtain - f + g = -0.8                                                               | B1       |
|    |      | Attempt to solve <i>their</i> equations simultaneously                              | M1ft     |
|    |      | Obtain $f = 0.9$ , $g = 0.1$                                                        | A1       |
|    |      | Obtain $\lambda = 5\pi$                                                             | B1       |
|    |      | State when $x = 0.3$ , $y = 0.1$                                                    | B1       |
|    |      | Relevant comment that model 2 matches experimental data more closely.               | B1       |

© UCLES 2013 9794/02/SM/16