

Cambridge International Examinations Cambridge Pre-U Certificate

MATHEMATICS (PRINCIPAL)

9794/01

Paper 1 Pure Mathematics 1

For Examination from 2016

SPECIMEN MARK SCHEME

2 hours

MAXIMUM MARK: 80

The syllabus is approved in England, Wales and Northern Ireland as a Level 3 Pre-U Certificate.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.

The following abbreviations may be used in a mark scheme:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- aef Any equivalent form
- art Answers rounding to
- cwo Correct working only (emphasising that there must be no incorrect working in the solution)
- ft Follow through from previous error is allowed
- o.e. Or equivalent

	•		•
1	(i)	Centre $(4, -7)$	B1
		Radius 8	B1
	(ii)	Attampt to form midpoint	M1
	(ii)	Attempt to form midpoint Obtain $(8, -3)$	A1
		Comm (o, 5)	711
2	(i)	Attempt differentiation of at least one term	M1
		Obtain $3x^2 - 4x - 4$	A1
	(ii)	State derivative equal to 0	B1
		Attempt to solve quadratic	M1
		Obtain $x = -\frac{2}{3}$ and 2	A1
		Obtain $y = 4.48$ and -5	A1
3	(3)	Many and function on aquivalent	B1
3	(i)	Many-one function or equivalent	DI
	(ii)	Attempt to form $gf(x)$	M1
		Obtain $7x^2 - 2$ only	A1
	(:::)	Attempt to make x the subject	M1
	(iii)	Obtain $\frac{1}{7}(x+2)$ only	A1
		$\int \int $	Al
	(iv)	Reflection	B1
		In line $y = x$	B1
4	(i)	f(-2) = 0 clearly shown	B1
		1 (2) Colomby Shown	D 1
	(ii)	Method shown e.g. division	M1
		Obtain $2x^2 + 3x - 9$	A1
		Attempt to solve quadratic $((2x-3)(x+3))$ $x=\frac{3}{2}$	M1
		$\begin{array}{c} x = \frac{1}{2} \\ x = 2 \text{ and } x = -3 \end{array}$	B1ft B1ft
		x - 2 and $x3$	חוומ
5		${}^{5}C_{2}2^{2}a^{3}$ or equivalent seen	B1
		${}^4C_2 \frac{a^2}{9}$ or equivalent seen	B1
		Attempt to solve correct relationship	M1
		$a=\frac{1}{6}$	A1
		Calculate Commission	1/1
6		Substitute for y (or x) Obtain quadratic equation in x (or y)	M1 A1
		Solve their quadratic equation	M1
		Obtain $x = 2$ and -1 (or $y = -1$ and 2)	A1
		Substitute back into linear or quadratic expression to find y (or x)	M1
I		Obtain $y = -1$ and 2 (or $x = 2$ and -1)	A1ft

	ı		1
7	(i)	Attempt to eliminate fractions	M1
		Obtain $8x-1 = A(x+1) + B(2x-1)$	A1
		Obtain $A = 2$	B1
		Obtain $B = 3$	B1
	(ii)	Attempt integration to obtain at least one ln term	M1
	(11)	Obtain $P \ln 2x - 1 + Q \ln x + 1 $	A1
		Use limits in correct order	M1
		Attempt use of log laws	DM1
		Obtain ln24 AG	A1
8		State derivative	B1
		Use of the correct Newton-Raphson formula	M1
		State 1 and at least one other correct value (1.8, 1.59249, 1.56922, 1.56895, 1.56895) State 1.569	A1 A1
		State 1.309	Al
9	(i)	$z^* = 3 + 4i$ seen or implied	B1
		9 – 4i obtained	B1
	(ii)	Multiply by conjugate	M1
		$\frac{3}{5} + \frac{4}{5}i$ or equivalent	A1
		5 + 1 of equivalent $5 + 5$	Al
	(iii)	Show 3 – 4i on an Argand diagram	B1
	(111)	Show 3 + 4i on an Argand diagram	B1ft
10	(i)	Dealing with cot	B1
		Adding fractions in terms of sin and cos	M1
		Use of $\cos^2 + \sin^2$	M1 A1
		Simplification to given answer	AI
	(ii)	Substituting $\csc\left(\theta + \frac{\pi}{4}\right)$	M1
	(11)		
		Converting equation in sin	M1
		$\theta + \frac{\pi}{4} = 0.4115, 2.730, 6.695$	M1
		$\theta = 1.94, 5.91$	A1
11	(i)	State <i>n</i> th term of an AP for at least one term. $(a, a + 8d \text{ and } a + 13d)$	M1
11	(i)	Equate to ar and ar^2 ($a + 8d = ar$, $a + 13d = ar^2$)	A1
		State an expression for r , d or r^2	B1
		Equate 2 expressions and make at least one step to solve	M1
		Obtain an expression for d or a	
		$d = \frac{-3a}{64}$	A1
		Substitute <i>their</i> value for d or a to find r	M1
		Obtain $r = \frac{5}{8}$ AG	A1
	(ii)	Substitute <i>r</i> into correct formula	M1
		Obtain $S = \frac{8a}{3}$	A 1
		$\frac{\text{Cotain } S - \frac{1}{3}}{3}$	A1
i	1		i

12	(i)	Use $f' = 1$ and $g = \ln x$ and apply the correct formula for integration by parts Obtain AG correctly	M1 A1
	(ii) (a)	$f'=\ln x$ and $g=\ln x$	B1
		$f'= \ln x$ and $g = \ln x$ Obtain $(\ln x)(x \ln x - x) - \int f(x)dx$	B1
		Attempt to simplify integral and substitute result from (i)	M1
		Obtain $\int (\ln x - 1) dx = x \ln x - x - x$ and hence $x(\ln x)^2 - 2x \ln x + 2x (+ c)$.	A1
		_	
	(b)	Attempt integration by parts as $g(x) - \int f(x)dx$	M1
		Obtain $(\ln x)(\ln(\ln x)) - \int f(x)dx$	A1
		Obtain $g(x) - \int \frac{1}{x} dx$	A1
		Obtain $(\ln x)(\ln(\ln x)) - \ln x + c$	A1
		Sight of $+c$ in last two parts	B1

© UCLES 2013 9794/01/SM/16

BLANK PAGE

© UCLES 2013 9794/01/SM/16