MARK SCHEME for the May/June 2013 series

9794 MATHEMATICS

9794/03

Paper 3 (Applications of Mathematics), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.theallpapers.com

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9794	03

Where appropriate, accept answers to 3 sf or better, then, except in **Q4 (iii)**, ISW if rounded to 2sf or fewer. Answers given to 2 sf or fewer without an "unrounded" answer score A0.

1		$\overline{x} = \frac{192}{100} = 1.92$	M1 A1		Use of correct formula for mean; may be implied. c.a.o.
		$s = \sqrt{\frac{488}{100} - 1.92^2} = \sqrt{1.1936} = 1.09(25)$	M1 A1 [4]	[4]	Use of correct formula for standard deviation; may be implied. c.a.o. Accept unbiased estimate 1.09(80) If no working shown, answer must be correct to 3 sf (or better) to score.
2	(i)	$P(A \cap B) = P(A) \times P(B \mid A)$	M1		Conditional probability rule applied, s.o.i. c.a.o.
		$=\frac{1}{2}\times\frac{1}{4}=\frac{1}{8}$	A1 [2]		Accept solutions based on Venn diagrams.
	(ii)	$P(B) = P(A \cup B) - P(A) + P(A \cap B)$	M1		Probability rule applied, s.o.i.
		$=\frac{5}{6}-\frac{1}{2}+\frac{1}{8}=\frac{11}{24}$	A1 [2]	[4]	Ft (i) provided both $P(A \cap B)$ and $P(B)$ lie between 0 and 1.
3	(i)	$S_{xy} = 77532 - \frac{1002 \times 1865}{25} = 2782.8$	M1		Use of formula for numerator.
		$S_{xx} = 43508 - \frac{1002^2}{25} = 3347.84$	M1		Use of formula for either term in denominator.
		$S_{yy} = 142749 - \frac{1865^2}{25} = 3620$			
		$r = \frac{2782.8}{\sqrt{3347.84 \times 3620}} = 0.799(36)$	M1 A1 [4]		Use of formula for <i>r</i> . c.a.o.
	(ii)	Form $y = ax + b$			
		$a = \frac{S_{xy}}{S} = \frac{2782.8}{2247.84} = 0.83(122)$	M1		Use of formula for <i>a</i> .
		<i>S_{xx}</i> 3347.84	A1		S_{xy} and S_{xx} from above. AG.
		$b = \overline{y} - a\overline{x}$			
		$\therefore b = \frac{1865}{25} - 0.83122 \times \frac{1002}{25}$	M1		Use of formula for <i>b</i> .
		$= 74.6 - 0.83122 \times 40.08 = 41.28(46)$	A1 [4]		AG. Must be convincing.
					Allow M1 for use of $a = 0.83$ to find b (= 41.33), or $b = 41.28$ to find a (= 0.83133), but not both, but do not award the corresponding A mark.

Page 3		Mark Sc	Syllabus	Paper				
		Pre-U – May/	/June		9794	03		
(iii)	When $x = 50$, $y = 82.78 \approx 82.8$ This is ok; it is within the range of the					Accept a.w.r.t. 82.8 At least one of the comments must refer		
	data. When $x = 65$, $y = 95.23 \approx 95.2$					within/beyond the range of the data. (o.e.) Accept a.w.r.t. 95.2		
	the data.	t ok; it is beyond the range of	ы	[4]	[12]			
4 (i)	$X \sim N(85.1, 3.4^2)$ $P\left(Z < \frac{80 - 85.1}{3.4}\right)$		M1			Standard	ising.	
	$= \Phi(-1.5)$ = 0.0668	$=1-\Phi(1.5)=1-0.9332$	M1 A1	[3]		$1 - \dots$ to deal with negative z value.		
(ii)	P(B(6, 0.0)668) <1)	M1			Recognise need for $B(6, p)$. Possibly implied by partially correct terms in the next line.		
	$= 0.9332^{6}$	$+ 6 \times 0.9332^5 \times 0.0668$	M1 M1			Either term correct. Sum of two correct terms.		
	= 0.66046	5 + 0.28366						
	= 0.944(1	2)	A1	[4]		Ft their p	from (i).	
(iii)	250 × (1 -	- 0.9441)	M1			250 ×		
	=13.975 ≈	≈ 14.0	M1 A1	[3]	[10]	rounded	at least 1 dp. Do r to the nearest inte g an answer to 3sf	ger, even

	Pa	ge 4	Mark Sc		Syllabus	Paper				
			Pre-U – May/		9794	03				
5	(i)	$\frac{7!}{2!} = \frac{5040}{2}$	= 2520	M1 M1 A1	[3]		7! ÷ 2! c.a.o.			
	(ii)	⁶ C ₅	⁶ C ₅				Consider selections when all digits are different.			
		${}^{6}C_{5} \times {}^{5}P_{5}$	5 or ${}^6P_5 = 720$	A1			Arrangen	nents when all dig	gits different.	
		${}^{5}C_{3}$		M1			Consider	selections of the	form 11xxx.	
		(10)>	$\frac{5!}{2!} = 600$	M1 A1			Arrangen	nents of 11xxx		
		720 + 600)	M1			Adding t	wo (or more) rele	vant cases.	
		= 1320		A1	[7]		Fully correct.			
		OR: (e.g.) 1's	Using no 1's + one 1 + two							
		$= {}^{5}P_{1}$	$P_5 + 5 \times {}^5P_4 + 10 \times {}^5P_3$							
		= 12	0 + 600 + 600 = 1320			[10]				
6	(i)	v = t(t-2)	(t - 4)	M1			Set $v = 0$	and attempt to so	lve.	
		$t \neq 0$ so $t \neq 0$	= 2 and 4.	A1			Fully cor	rect.		
							substituti	or both $t = 2$ and t on or stated without ws/explains there	out working, and	
		Cubic gra other plac	ph crossing the <i>t</i> axis at 0 & 2 es.	B1						
			ect <u>curve</u> , axes and intercepts nd curve only between $t = 0$	B1	[4]					
	(ii)	$a = 3t^2 - 1$	2 <i>t</i> + 8	M1 A1			Differentiate <i>v</i> . All terms correct. Allow if found in (i) and used here.			
		= 12 - 24	$+8 = -4 (ms^{-2})$	A1	[3]		Substitute	e <i>t</i> = 2. c.a.o		

Pa	ge 5	Mark Scheme					Syllabus	Paper	
		Pre-U – May/	June	e 201	3		9794	03	
(iii)	$x = \frac{t^4}{4} - 2t^3 + 4t^2 + c$		M1 A1			<i>"</i> + <i>c</i> ".	v. correct; condone finite integral as a		
	x = 0 when $t = 0$ therefore $c = 0$		A1	A1		Deal with <i>c</i> correctly or consider lower limit of definite integral.			
	When $t =$	2, $x = 4 - 16 + 16 = 4$	A1			Indep of previous A1.			
	So averag	ge speed = $4 / 2$	M1			Use form	Use formula for average speed.		
	= 2 (ms ⁻¹)	A1	[6]	[13]	Ft <i>their</i> x	when $t = 2$.		
7 (i)) Let the velocities of <i>A</i> and <i>B</i> after the collision be <i>v</i> and <i>w</i> .								
	4mu = 4mv + 2mw $\therefore 2u = 2v + w$		M1					mentum: a t with a diagram,	
	eu = w - v		M1			Use of N.E.L.: a correct equation, consistent with a diagram, if present.			
	: $v = \frac{1}{3}(2-e)u$ and $w = \frac{2}{3}(1+e)u$		M1 A1	[4]		Solve simultaneous equations. Both correct. Accept "w" unsimplified.			
(ii)	If $e = \frac{1}{2}$	then $v = \frac{1}{2}u$ and $w = u$	B1	[1]		Ft their v	and <i>w</i> in (i).		
(iii)		billides with B velocities are: u (and 0) respectively.	M1			~ ~ •	e result from (i) a correct method f		
		bilides with C velocities are: u/2 and u respectively.	A1	[2]		All correct	ct, including A.		
(iv)	A and B have the same velocity and C is moving away from them so there can be no further collisions.		B1	[1]	[8]	Ft (iii). M	1ust consider all 3	particles.	
8 (i)	$x = Ut \cos \theta$	θ	B1						
	$y = Ut\sin\theta - \frac{1}{2}gt^2$		B1			Allow g =	= 9.8.		
	$t = \frac{x}{U\cos\theta}$		M1			Make <i>t</i> th substitute	ne subject of <i>x</i> equ e.	nation and	
	$\therefore y = U\left(\frac{1}{2}\right)$	$\frac{x}{U\cos\theta}\bigg)\sin\theta - \frac{1}{2}g\bigg(\frac{x}{U\cos\theta}\bigg)^2$							
	$= x \tan x$	$n\theta - \frac{gx^2}{2U^2\cos^2\theta}$	A1	[4]		Accept an	ny correct form/u	nsimplified.	

© Cambridge International Examinations 2013

Pa	age 6 Mark Scheme						Syllabus	Paper	
	Pre-U – May/June 2013						9794	03	
(ii)	$y = 0$ and $x \neq 0$ gives $x = \frac{U^2}{g} \sin 2\theta$		$y = 0$ and $x \neq 0$ gives $x = \frac{U^2}{g} \sin 2\theta$ M1			subject. A by solving) and attempt to make x or $\sin 2\theta$ the Allow other equivalent methods e.g ig a quadratic - 1 = 0) in tan θ (= 2 ± $\sqrt{3}$).		
	$\therefore \sin 2\theta = \frac{gx}{U^2} = \frac{10 \times 45}{30^2} = 0.5$		A1			Substitute and obtain 0.5 (or tan θ) correctly.			
	This has 2 trajectorie	2 solutions so there are 2 es.	B1			Require a	Require an explicit statement to this effect		
	$\therefore \theta = 15^{\circ}$	or 75°	A1	[4]		Both corre	ect.		
(iii)	$\theta = 15^{\circ}$ is	s fast (and low).	B1			"Advanta	ge" of one. (ft (ii))	
	$\theta = 75^{\circ}$ is high (more likely to clear any obstacles).		B1	[2]		"Advantage" of the other. (ft (ii))			
					[10]		ly for just "high' her reasonable "a		
9 (i)		with weight, normal contact on forces added.	B1	[1]		Do not ac T shown.	cept both T and t	he components of	
(ii)	$F = T\cos\theta$	9	B1			Resolve h	orizontally.		
	mg = R +	$T \sin \theta$	B1			Resolve v	ertically.		
	$F = \mu R$		M1			Limiting friction			
	$T\cos\theta = \mu(mg - T\sin\theta)$ $\therefore T = \frac{\mu mg}{\cos\theta + \mu\sin\theta}$		M1	[4]		answer. N	<i>F</i> and <i>R</i> and rea fust be convincinintermediate line	ng – require at	
(iii)	With $\mu = 0.75$, min <i>T</i> occurs at max ($\cos \theta + 0.75 \sin \theta$).		M1			Allow sub	ostitution for μ at	any stage.	
	EITHER $-\sin\theta + 0.75\cos\theta = 0$		M1 A1			Differenti	ate and set $= 0$.		
	$\tan\theta = 0.7$	$75 \therefore \theta = invtan(0.75) = 36.9^{\circ}$	A1	[4]					
	OR Use of $R\cos(\theta - \alpha)$ or $R\sin(\theta + \alpha)$.		M1			And set co	os() or sin()	= 1.	
	$\alpha = 2$	36.9° or 53.1°	A1			As approp	oriate.		
	ϵ	9=36.9°	A1		[9]				