MARK SCHEME for the May/June 2013 series

9794 MATHEMATICS

9794/03 Paper 3 (Applications of Mathematics), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9794	03

Where appropriate, accept answers to 3 sf or better, then, except in Q4 (iii), ISW if rounded to 2sf or fewer. Answers given to 2 sf or fewer without an "unrounded" answer score A0.

1	$\begin{aligned} & \bar{x}=\frac{192}{100}=1.92 \\ & s=\sqrt{\frac{488}{100}-1.92^{2}}=\sqrt{1.1936}=1.09(25 \ldots) \end{aligned}$	M1 A1 M1 A1 [4]	[4]	Use of correct formula for mean; may be implied. c.a.o. Use of correct formula for standard deviation; may be implied. c.a.o. Accept unbiased estimate 1.09(80...) If no working shown, answer must be correct to 3 sf (or better) to score.
2 (i) (ii)	$\begin{aligned} & \mathrm{P}(A \cap B)= \mathrm{P}(A) \times \mathrm{P}(B \mid A) \\ &= \frac{1}{2} \times \frac{1}{4}=\frac{1}{8} \\ & \mathrm{P}(B)=\mathrm{P}(A \cup B)-\mathrm{P}(A)+\mathrm{P}(A \cap B) \\ &= \frac{5}{6}-\frac{1}{2}+\frac{1}{8}=\frac{11}{24} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \\ & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$	[4]	Conditional probability rule applied, s.o.i. c.a.o. Accept solutions based on Venn diagrams. Probability rule applied, s.o.i. Ft (i) provided both $\mathrm{P}(A \cap B)$ and $\mathrm{P}(B)$ lie between 0 and 1 .
3 (i) (ii)	$\begin{aligned} & S_{x y}=77532-\frac{1002 \times 1865}{25}=2782.8 \\ & S_{x x}=43508-\frac{1002^{2}}{25}=3347.84 \\ & S_{y y}=142749-\frac{1865^{2}}{25}=3620 \\ & r=\frac{2782.8}{\sqrt{3347.84 \times 3620}}=0.799(36 \ldots) \end{aligned}$ Form $y=a x+b$ $a=\frac{S_{x y}}{S_{x x}}=\frac{2782.8}{3347.84}=0.83(122 \ldots)$ $b=\bar{y}-a \bar{x}$ $\begin{aligned} & \therefore b=\frac{1865}{25}-0.83122 \ldots \times \frac{1002}{25} \\ & =74.6-0.83122 \ldots \times 40.08=41.28(46 \ldots) \end{aligned}$	M1 M1 M1 A1 [4] M1 A1 M1 A1 [4]		Use of formula for numerator. Use of formula for either term in denominator. Use of formula for r. c.a.o. Use of formula for a. $S_{x y}$ and $S_{x x}$ from above. AG. Use of formula for b. AG. Must be convincing. Allow M1 for use of $a=0.83$ to find $b(=41.33 \ldots)$, or $b=41.28$ to find $a(=0.83133 \ldots)$, but not both, but do not award the corresponding A mark.

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9794	03

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9794	03

5 (i) (ii)	$\begin{aligned} & \frac{7!}{2!}=\frac{5040}{2}=2520 \\ & { }^{6} C_{5} \\ & { }^{6} C_{5} \times{ }^{5} P_{5} \text { or }{ }^{6} P_{5}=720 \\ & { }^{5} C_{3} \\ & \quad(10) \times \frac{5!}{2!}=600 \\ & 720+600 \\ & =1320 \end{aligned}$ $\text { OR: (e.g.) Using no } 1 \text { 's }+ \text { one } 1+\text { two }$ 1's $={ }^{5} P_{5}+5 \times{ }^{5} P_{4}+10 \times{ }^{5} P_{3}$ $=120+600+600=1320$	M1 M1 A1 [3] M1 A1 M1 M1 A1 M1 A1 [7]		$7!$ $\div 2$! c.a.o. Consider selections when all digits are different. Arrangements when all digits different. Consider selections of the form 11xxx. Arrangements of 11xxx Adding two (or more) relevant cases. Fully correct.
$\begin{array}{lc}6 & \text { (i) } \\ & \\ \\ & \\ & \\ & \text { (ii) }\end{array}$	$\begin{aligned} & v=t(t-2)(t-4) \\ & t \neq 0 \text { so } t=2 \text { and } 4 . \end{aligned}$ Cubic graph crossing the t axis at $0 \& 2$ other places. Fully correct curve, axes and intercepts labelled and curve only between $t=0$ and 4. $a=3 t^{2}-12 t+8$ $=12-24+8=-4\left(\mathrm{~ms}^{-2}\right)$	M1 A1 B1 B1 [4] M1 A1 A1 [3]		Set $v=0$ and attempt to solve. Fully correct. SC: B1 for both $t=2$ and $t=4$ found by substitution or stated without working, and B1 if shows/explains there are no other values. Differentiate v. All terms correct. Allow if found in (i) and used here. Substitute $t=2$. c.a.o

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9794	03

(iii)	$x=\frac{t^{4}}{4}-2 t^{3}+4 t^{2}+c$ $x=0$ when $t=0$ therefore $c=0$ When $t=2, \quad x=4-16+16=4$ So average speed $=4 / 2$ $=2\left(\mathrm{~ms}^{-1}\right)$	M1 A1 A1 A1 M1 A1 [6]	[13]	Integrate v. All terms correct; condone omission of " $+c$ ". Allow definite integral as alternative. Deal with c correctly or consider lower limit of definite integral. Indep of previous A1. Use formula for average speed. Ft their x when $t=2$.
(ii) (iii) (iv)	Let the velocities of A and B after the collision be v and w. $\begin{aligned} & 4 m u=4 m v+2 m w \\ & \therefore 2 u=2 v+w \end{aligned}$ $e u=w-v$ $\therefore v=\frac{1}{3}(2-e) u \text { and } w=\frac{2}{3}(1+e) u$ If $e=\frac{1}{2}$ then $v=\frac{1}{2} u$ and $w=u$ After A collides with B velocities are: $u / 2, u$ (and 0) respectively. After B collides with C velocities are: $u / 2, u / 2$ and u respectively. A and B have the same velocity and C is moving away from them so there can be no further collisions.	M1 M1 A1 [4] B1 [1] M1 A1 [2] B1 [1]	[8]	Use of conservation of momentum: a correct equation, consistent with a diagram, if present. Use of N.E.L.: a correct equation, consistent with a diagram, if present. Solve simultaneous equations. Both correct. Accept " w " unsimplified. Ft their v and w in (i). Apply the result from (i) at least once. Or a complete correct method for the $B C$ collision. All correct, including A. Ft (iii). Must consider all 3 particles.
8 (i)	$\begin{aligned} & x=U t \cos \theta \\ & y=U t \sin \theta-\frac{1}{2} g t^{2} \\ & t=\frac{x}{U \cos \theta} \end{aligned}$ $\begin{aligned} \therefore y & =U\left(\frac{x}{U \cos \theta}\right) \sin \theta-\frac{1}{2} g\left(\frac{x}{U \cos \theta}\right)^{2} \\ & =x \tan \theta-\frac{g x^{2}}{2 U^{2} \cos ^{2} \theta} \end{aligned}$	B1 B1 M1 A1 [4]		Allow $g=9.8$. Make t the subject of x equation and substitute. Accept any correct form/unsimplified.

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9794	03

\begin{tabular}{|c|c|c|c|c|}
\hline (ii)

(iii) \& \begin{tabular}{l}
$$
\begin{aligned}
& y=0 \text { and } x \neq 0 \text { gives } x=\frac{U^{2}}{g} \sin 2 \theta \\
& \therefore \sin 2 \theta=\frac{g x}{U^{2}}=\frac{10 \times 45}{30^{2}}=0.5
\end{aligned}
$$

This has 2 solutions so there are 2 trajectories.
$$
\therefore \theta=15^{\circ} \text { or } 75^{\circ}
$$

$\theta=15^{\circ}$ is fast (and low).

$\theta=75^{\circ}$ is high (more likely to clear any obstacles).

 \&

M1

A1

B1

A1 [4]

B1

B1 [2]

 \& [10] \&

Set $y=0$ and attempt to make x or $\sin 2 \theta$ the subject. Allow other equivalent methods e.g by solving a quadratic $\left(t^{2}-4 t+1=0\right)$ in $\tan \theta(=2 \pm \sqrt{ } 3)$.

Substitute and obtain $0.5($ or $\tan \theta)$ correctly.

Require an explicit statement to this effect.

Both correct.

"Advantage" of one. (ft (ii))

"Advantage" of the other. (ft (ii))

SC B1 only for just "high" and "low". Allow other reasonable "advantages".
\end{tabular}

\hline | (i) |
| :--- |
| (ii) |
| (iii) | \& | Diagram with weight, normal contact and friction forces added. $\begin{aligned} & F=T \cos \theta \\ & m g=R+T \sin \theta \\ & F=\mu R \end{aligned}$ $T \cos \theta=\mu(m g-T \sin \theta)$ $\therefore T=\frac{\mu m g}{\cos \theta+\mu \sin \theta}$ |
| :--- |
| With $\mu=0.75$, $\min T$ occurs at max $(\cos \theta+0.75 \sin \theta)$. |
| EITHER $-\sin \theta+0.75 \cos \theta=0$ $\tan \theta=0.75 \therefore \theta=\operatorname{invtan}(0.75)=36.9^{\circ}$ |
| OR Use of $R \cos (\theta-\alpha)$ or $R \sin (\theta+\alpha)$. $\begin{gathered} \alpha=36.9^{\circ} \text { or } 53.1^{\circ} \\ \theta=36.9^{\circ} \end{gathered}$ | \& | B1 [1] |
| :--- |
| B1 |
| B1 |
| M1 |
| M1 [4] |
| M1 |
| M1 |
| A1 |
| A1 [4] |
| M1 |
| A1 |
| A1 | \& [9] \& | Do not accept both T and the components of T shown. |
| :--- |
| Resolve horizontally. |
| Resolve vertically. |
| Limiting friction |
| Eliminate F and R and rearrange to given answer. Must be convincing - require at least one intermediate line. |
| Allow substitution for μ at any stage. |
| Differentiate and set $=0$. |
| And set $\cos (\ldots)$ or $\sin (\ldots)=1$. |
| As appropriate. |

\hline
\end{tabular}

