MARK SCHEME for the May/June 2013 series

9794 MATHEMATICS

9794/02

Paper 2 (Pure Mathematics 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.theallpapers.com

P	age 2	Mark Scheme	Syllabus		Paper	
		Pre-U – May/June 2013	9794	02		
1 (i)	$\mathbf{u} + \mathbf{v} = \left($	$\begin{pmatrix} 1\\8 \end{pmatrix}$, $\mathbf{u} - \mathbf{v} = \begin{pmatrix} 7\\4 \end{pmatrix}$		B1 B1	[2]	
(ii)	$\begin{vmatrix} \mathbf{u} + \mathbf{v} \end{vmatrix} = \mathbf{v}$ $\begin{vmatrix} \mathbf{u} - \mathbf{v} \end{vmatrix} = \mathbf{v}$	$\sqrt{1+64} = \sqrt{65}$ $\sqrt{49+16} = \sqrt{65}$		M1 A1	[2]	[4]
2 (i)	Any corre	ect complete method		M1 A1	[2]	
(ii)	$r = -\frac{1}{3}$			B1		
	$S_{\infty} = \frac{a}{1-a}$ $= \frac{162}{1-\frac{1}{3}} = \frac{162}{1-\frac{1}{3}}$	-		M1 A1	[3]	
(iii)	5	of -1, 3, -1, 3		B1 B1	[2]	[7]
3 (i)	$x^2 + 2x - a = 1, b = 1$	$3 = (x + 1)^2 - 4$ = -4)		B1 B1	[2]	
(ii)	Vertex at Let $x = 0$	(-1, -4) and solve ng: x-axis at -3 and 1,		B1 B1 ft M1 A1 B1	[5]	[7]
4 (i)		z = -1 and convincingly obtain 0		B1	[1]	
(ii)	$z^3 + 5z^2 +$ Solve $z^2 +$	hadratic $9z + 5 = (z + 1)(z^2 + 4z + 5) = 0$ 4z + 4z + 5 = 0 2z + i and $-2z - i$		M1 A1 M1 A1	[4]	
(iii)	Argand d	iagram showing their three roots		B1 ft	[5]	[10]

	Page 3		Mark Scheme Pre-U – May/June 2013	Syllabus 9794	s Pape 02			
			Fie-0 – May/Julie 2015	5754		02		
5	(i)	Different $y + x \frac{dy}{dx}$	iate implicitly, using product rule	M				
		final term	$1 2y \frac{dy}{dx}$	В	1			
		complete	$2x + y + x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$, and manipulate to given answer	r A	.1	[4]		
	(ii)		$e x = 2, y = 3 \frac{dy}{dx} = -\frac{7}{8}$	M	11			
		Gradient	of normal is $\frac{8}{7}$	А	.1			
			ugh $(2, 3)$ with <i>their m</i> .	Ν	1 1			
		Obtain 82	c - 7y + 5 = 0	А	1	[4]	[8]	
6	(i)		$gN = \log a + t \log b$ o.e. w.w.w. with $y = mx + c$	M A		[2]		
	(ii)	$\begin{array}{c c}t & 1\\ \log N & 0.\end{array}$	2 3 4 5 6 7 8 9 1 1.2 1.38 1.52 1.6 1.67 1.84	M A				
		Line of b Obtain <i>a</i> <i>b</i>	ts (condone 1 error) est fit between 5.5 and 6.5 between 1.32 and 1,42 1 for <i>a</i> and <i>b</i> from data in the table only if no graph drawn	B B B B	1 1	[6]		
	(iii)	Follow th	brough <i>their a</i> and <i>b</i> given answers in these ranges		81 ft 81 ft	[2]		
	(iv)	<i>N</i> > 500	(or <i>their</i> expression from part (i)), or evaluate enough terms <i>t</i> and interpret as a year		4 1	[3]		
	(v)	It predIt pred	onable observation about the <i>model</i> , e.g: licts unrestricted growth which is unrealistic. licts that the growth rate is not constant, but increases with p which is realistic.	B	31	[1]		
			polation is not valid when breeding conditions may change, s	so not			[14]	

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9794	02

			1		
7	(i)	Attempt product rule	M1		
	()	Obtain $2xe^{-x}$	A1		
		Obtain $\pm x^2 e^{-x}$	M1		
		Obtain $xe^{-x}(2-x)$ AG	A1	[4]	
	(ii)	Set equal to zero and solve	M1		
		At least two correct x or y values	A1		
		$(0, 0)$ and $(2, 4e^{-2})$	A1	[3]	[7]
8	(i)	Since most terms cancel, $(1 + 30^{-1})$	M1		
		$=1\frac{1}{30}$	A1	[2]	
		30	111	[#]	
	(ii)	$S = -1 + 2 - 3 + 4 - \dots -99 + 100$	M1		
	(11)	$= 50 \times 1 = 50$	Al	[2]	[4]
		50 ~ 1 50	231	["]	[ד]
9	(i)	$\csc 2x = \frac{1}{\sin 2x}$, $\cot 2x = \frac{\cos 2x}{\sin 2x}$	B1		
		OR $\frac{1}{\tan 2x}$ seen			
		$\csc 2x - \cot 2x = \frac{1 - \cos 2x}{\sin 2x}$			
		$1 - (1 - 2\sin^2 x)$	M1		
		$= \frac{1 - (1 - 2\sin^2 x)}{2\sin x \cos x}$	M1		
		$= \frac{2\sin^2 x}{2\sin^2 x}$			
		$=\frac{2\sin x}{2\sin x\cos x}$	A1		
			A 1		
		$=\frac{\sin x}{\cos x}=\tan x$	A1		
		$\tan\frac{3}{8}\pi = \csc\frac{3}{4}\pi - \cot\frac{3}{4}\pi = 1 + \sqrt{2}$	B1	[6]	

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9794	02

	Pre-U – May/June 2013 9794		02	
(ii)	$\int_{\frac{1}{4}\pi}^{\frac{3}{8}\pi} (\csc 2x - \cot 2x)^2 dx = \int_{\frac{1}{4}\pi}^{\frac{3}{8}\pi} \tan^2 x dx$	M1		
	$= \int_{\frac{1}{4}\pi}^{\frac{3}{8}\pi} \sec^2 x \pm 1 dx$	A1 M1		
	$= \left[\tan x - x\right]_{\frac{1}{4}\pi}^{\frac{3}{6}\pi}$	A1 M1		
	$=\sqrt{2}-\frac{1}{8}\pi$	A1	[6]	
	Alternate solution: $c^{2}\pi$			
	$\int_{\frac{1}{4}\pi}^{\frac{3}{8}\pi} (\csc 2x - \cot 2x)^2 dx$			
	$= \int_{\frac{1}{4}\pi}^{\frac{3}{8}\pi} \csc^{2} 2x - 2\csc 2x \cot 2x + \cot^{2} 2x dx$	M1		
	$= \int_{\frac{1}{4}\pi}^{\frac{3}{8}\pi} 2\csc^2 2x - 2\csc 2x \cot 2x - 1dx$	A1		
	$= \left[-\cot 2x + \csc 2x - x \right]_{\frac{1}{4}\pi}^{\frac{3}{8}\pi}$	M1 A1		
	$=\sqrt{2}-\frac{1}{8}\pi$	M1 A1	[6]	[12]
10 (i)	$\frac{\mathrm{d}V}{\mathrm{d}t} \propto \sqrt{h}$	M1		
	Since the tank is a prism $V \propto h$ so			
	$\frac{\mathrm{d}V}{\mathrm{d}t} = a\sqrt{V}$ where <i>a</i> is a constant	A1	[2]	
(ii)	Separating variables			
	$\int \frac{1}{\sqrt{V}} \mathrm{d}v = \int a \mathrm{d}t$	M1		
	$2\sqrt{V} = at \ (+c)$	M1 A1		
	Use $t = 0$, $V = V_0$ to obtain $c = 2\sqrt{V_0}$	B1		
	and $t = 1$, $V = \frac{1}{2}V_0$ in an equation involving <i>a</i> and <i>c</i> (or using definite integrals) to	M1		
	find <i>a</i> in terms of V_0 only			
	$a = 2\sqrt{V_0} \left(\frac{1}{\sqrt{2}} - 1\right)$	A1		
	convincingly substitute and rearrange to get			
	$V = V_0 \left(\left(\frac{1}{\sqrt{2}} - 1 \right) t + 1 \right)^2$	A1	[7]	

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9794	02

(i	$V = 0$ implies $t = \frac{-1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}$	M1		
	$\sqrt{2}$ 3.41 hours is 3 hours 24 mins and 51 seconds Condone verification only if 5.16 × 10 ⁻⁶ V ₀ seen	A1	[2]	[11]