MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9794 MATHEMATICS
9794/03 Paper 3 (Applications of Mathematics), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9794	03

1	Obtain 154.3 Attempt standard deviation formula Obtain $\sqrt{\left(\frac{239093}{10}-(154.3)^{2}\right)}=\sqrt{100.81}$ Obtain 10.0(4)	B1 M1 A1 A1 [4]	[4]	With no working shown allow only correct answers. 154 used for sd (gives 13.9...) gets max M1A1A0. Allow unbiased estimator (10.58 ...) for full marks.
2 (i) (ii) (iii)	State Geometric Attempt $\left(\frac{4}{5}\right)^{2}\left(\frac{1}{5}\right)$ Obtain $\frac{16}{125}=0.128$ Attempt $\frac{1}{5}+\left(\frac{4}{5}\right)\left(\frac{1}{5}\right)$ Or $1-\left(\frac{4}{5}\right)^{2}$ Obtain $\frac{9}{25}=0.36$	$\begin{array}{lll}\text { B1 } & {[1]} \\ \text { M1 } & \\ \text { A1 } & {[2]} \\ \text { M1 } & \\ & \\ \text { A1 } & {[2]}\end{array}$	[5]	SC When $p=\frac{1}{4}$ used, allow \max M1A0. SC When $p=\frac{1}{4}$ used, allow \max M1A0.
3	Use of $z=\frac{x-\mu}{\sigma}$ Use $\sigma=6$ and $\mu=160$ Obtain $z=1.667$ Obtain 0.952	$\begin{aligned} & \text { M1 } \\ & \\ & \text { B1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[4]	Accept $0.9522,0.9521$ but not 0.9515 or 0.9525
4 (i) (ii) (iii)	Recognise combination problem Obtain 3060 Obtain 5 State or imply Bin(20, 0.05) Attempt $\mathrm{P}(X<5)$ via cumulative tables or $\mathrm{P}(X=0)+\mathrm{P}(X=1)+\ldots \ldots .+\mathrm{P}(X=4)$ Obtain 0.997(4)	M1 A1 $[2]$ B1 $[1]$ B1 M1 A1 $[3]$	[6]	" 1 - this" gets M0A0

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9794	03

5 (i) (ii) (iii) (iv)	Their product of three fails $(0.55 \times 0.4 \times 0.85)$ Obtain 0.187 Attempt $\mathrm{P}(F) \mathrm{P}(S) \quad(0.55 \times 0.6=0.33)$ Attempt $\mathrm{P}(F) \mathrm{P}(F) \mathrm{P}(S) \quad(0.55 \times 0.4 \times 0.15=$ 0.033) Or $1-(0.45+(\mathbf{i}))$ Obtain 0.363 Use $\mathrm{P}(S)+$ answer to (ii) Or 1 - (i) Obtain 0.813 Attempt to divide two probabilities Divide their $\mathrm{P}(\mathrm{F}) \mathrm{P}(\mathrm{S})$ by their (iii) Obtain 0.406 or (110/271)	M1 A1 [2] M1 M1 A1 [3] M1 A1 [2] M1 M1 A1 [3]	[10]	$\mathrm{ft}(\mathbf{i})$ if appropriate. ft (i) or (ii) as appropriate. ft (iii).
6 (i)	Table shows $(-1,0.7)$ $(0,0.25)$ and $(9,0.05)$	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & {[2]} \end{array}$		SC For $(0,1,10)$ allow max B1B0.
(ii)	Use $\mathrm{E}(X)$ formula Obtain - 0.25	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		If wrong dist ${ }^{\mathrm{n}}$ used $(0,1,10)$ then max M1A0 (including when cand subtracts 1 subsequently (AG)).
	Use $\mathrm{E}\left(X^{2}\right)$ formula Obtain 4.69 or $\left(\frac{75}{16}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		If wrong dist ${ }^{\mathrm{n}}$ used $(0,1,10)$ then max M1A0.
(iii)	Use $10+10 \mathrm{E}(X)$ Obtain $10+10(-0.25)=7.5$	$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$		Do not ISW if cand rounds answer (to 7 or 8)
(iv)	P (Must win at least one game) State $(0.25)^{10}$ Obtain $1-(0.95)^{10}+(0.25)^{10}=0.401$ $(0.25)^{10}$ must be seen in the final calculation though it does not affect the value of 0.401 OR	M1 B1 A1 [3]		
	$\begin{aligned} & 1-\sum_{r=0}^{r=9}\left({ }^{10} C_{r} 0.7^{10-r} 0.25^{r}\right) \\ & =1-0.59873 \ldots \\ & =0.401(26 \ldots) \end{aligned}$	M1 A1 A1	[11]	Summation of attempt at relevant terms. All terms correct.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9794	03

7 (i) (ii) (iii)	Attempt to find component $15 \cos 60=7.5 \mathrm{~N}$ $15 \sin 60=\frac{15}{2} \sqrt{3}=13.0 \mathrm{~N}$ to 3 sf Use Pythagoras, or cosine rule Obtain magnitude $\sqrt{475}=5 \sqrt{19}=21.8 \mathrm{~N}$ to 3 sf Use inverse tan, or sine rule Obtain angle 36.6° to 3 sf	M1 A1 $[2]$ B1 $[1]$ M1 A1 M1 A1 $[4]$	[7]	Allow $\sin /$ cos error. Accept any correct (unsimplified) form. Allow consistent sin/cos error. Accept any correct (unsimplified) form. c.a.o. c.a.o.
8	The equation of motion is $T-20 \mathrm{~g}=20 a$ Using 'suvat', assuming zero initial speed: $\begin{aligned} & 10=0+0.5 \mathrm{a} \times 4^{2} \\ & a=1.25 \mathrm{~ms}^{-2} \end{aligned}$ $T=225$	B1 M1 A1 A1	[4]	
9 (i) (ii) (iii)	Resolving perpendicular to the slope $R=100 \cos 35=81.9152 \ldots \mathrm{~N}$ So Max Friction $=\mu R=16.38 \ldots \mathrm{~N}$ Resolving parallel to the slope (friction down the slope) $P=100 \sin 35+16.38 \ldots=73.74 \ldots$ (friction up the slope) $P=100 \sin 35-16.38 \ldots=40.97 \ldots$	$\begin{array}{lr} \text { M1 } & \\ \text { A1 } & {[2]} \\ \text { M1 } & \\ \text { A1 } & {[2]} \\ \text { M1 } & \\ \text { A1 } & {[2]} \end{array}$	[6]	
10 (i) (ii) (iii)	COM: $1 \times 14+2 \times 0=U+2 V$ NEL: $V-U=0.5(14-0)$ Solution: $\begin{aligned} & U=0 \mathrm{~ms}^{-1}, \\ & V=7 \mathrm{~ms}^{-1} . \end{aligned}$ For impact of B on C : COM: $2 \times 7+5 \times 0=2 U+5 V$ NEL: $V-U=0.5(7-0)$ Solution: $U=-0.5 \mathrm{~ms}^{-1}$ $V=3 \mathrm{~ms}^{-1}$ B reaches A in 2 seconds. Distance between A and C is $1+2 \times 3=7$ metres	B1 B1 B1 B1 $[4]$ B1 B1 B1 $[3]$ B1 B1 B1 $[3]$	[10]	Depends on $2^{\text {nd }} \mathrm{B} 1$. SC If NEL is $V+U=\ldots$ then \max B1B0B0B1. May be seen/awarded in (ii). ft their U. ft their V.

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9794	03

11 (i) Acceleration parallel to the slope is
$-\mathrm{g} \cos 60=-5 \mathrm{~ms}^{-2}$
B1
Use 'suvat': $10=20 t+0.5(-5) t^{2}$
Solve quadratic $t^{2}-8 t+4=0$
Obtain $4-\sqrt{12}(=4-2 \sqrt{3}=0.536$ seconds $)$
Initial speed of projectile is
$20-5(4-2 \sqrt{3})=10 \sqrt{3}\left(=17.32 \mathrm{~ms}^{-1}\right)$
(ii) For the vertical motion, the particle strikes the ground when
$-5=10 \sqrt{3} \sin 30 t+0.5(-10) t^{2}$
$t^{2}-\sqrt{3} t-1=0$
Solve quadratic $t=\frac{\sqrt{3}+\sqrt{7}}{2}$
Obtain positive solution $=2.189 \mathrm{~s}$
Total horizontal distance travelled from O is given by their horizontal distance $O A+$ (their horizontal velocity at $A) \times($ their time of flight $)$ $=10 \cos 30$ $+10 \sqrt{3} \cos 30 \times 2.189$
$=41.5$ metres

Any appropriate 'suvat' used. Correct equation.

Correct outcome.
$2^{\text {nd }}$ appropriate 'suvat' used.
Correct outcome.

Condone sin/cos confusion.
ft their t.
c.a.o.

