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1 (i) Using the quadratic formula or equivalent, 

324
2

16648
±=

−±
=x   

 

 (ii) ( )( )32326 −+  = 332343612 −+−    
 

                                    = 6343612 −+−               
                                      

                                    = 326 −  

M1  
 

A1  [2] 
 
 

M1  

 

B1  

 

A1   [3] 

 

 

 

 
 

 

 

 

 

 
 

[5] 

up to 1 error 
 
 
 
 

Multiply out 

 

333 =  

2 (i) (a) AB = 1086
22
=+  

 
  (b) Midpoint of AB is (6, –3) 
 
  (c) (x – 6)2 + (y + 3)2 = 25 AEF 
 
  
  
 (ii) Gradient of AC is –0.5 

 Use of y = mx + c or equivalent 
 Required equation:  

2

11

2

1
+−= xy  

M1  
A1   [2] 
 

B1   [1] 
 

√B1  
√B1  
√B1  [3] 
 

M1  
M1  
A1   [3] 

 

 

 

 

 

 

 

 

 

 

[9] 

Use Pythagoras 
 
 

 

ft their values from (a) + 
(b) 
 
 

x

y

∆

∆  

3 ( )1 1
21

2
00

e d e
x x

x x x − = − ∫  

 
                                      
                                   3

2
e= −  

 

M1  
A1  
M1  
 

A1   [4] 

 

 

 

[4] 

kex + mx2 

 
 
Use of limits 
Without + c 

4 Take logarithms and apply log rule 

  (2x – 1)log2 = log5 
 Rearrange to make x the subject 

 Obtain  
4log

1
=x  = 1.66096… AEF 

M1  
A1  
M1  
 

A1    [4] 

 
 

 

[4] 

 
 
Up to 1 error 

5 (i) Sine wave through the origin, showing 
intersections with the x-axis at (0), π  and π2 . 

 

 (ii)  Sine wave translated in the negative x-direction 
  x-intercepts π

6

5 , π
6

11 , y-intercept 0.5 and 

symmetrical about the x-axis. 

B1   [1] 
 
 

M1  
 

A1    [2] 

 

 

 

 

 

[3] 

 

6 (i) (a) u1 = 5, u5 = 37 implies 4d = 32 

   d = 8                                                        
   un = 8n – 3 AEF   ft their d 

 

  (b) Sn = )82(
2

n

n

+  AEF   ft their d 

 
 (ii) S25 – S4

  = 2525 – 68   
                   = 2457 

M1  
A1  
M1  
√A1  [4] 
 

M1  
√A1  [2] 
 

M1  
A1   [2] 

 

 

 

 

 

 

 

 

[8] 

seen in either part 
 
 
 
 
 
 
 

Or equivalent 
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7 (i) Attempt product rule 

  2 2d
2e 2(2 3)e

d

x x
y

x
x

− −

= − −  

        2(8 4 )e x
x

−
= −  

 

 (ii) 
d

0
d

y

x
≥  seen 

  y is increasing when x ≤ 2. 

M1  
A1  
 

A1    [3] 
 
 
 
B1  
 

B1    [2] 

 

 

 

 

 

 

 

 

[5] 

 

8 Separate variables, prior to integration: 

 3

2

1
d dy x x

y

−

=∫ ∫  

 

 4

4

1
1

x
y
=         (+c) 

 Subs into expression including c and solve 

 c = 
1

4
 so 

1

4

4
+

=

x
y    AEF 

M1  
 
A1  
 
 
 

A1  
A1  
M1  
 

A1    [6] 

 

 

 

 

 

 

 

 

[6] 

 

9 (i) P = 2r + 2rx 

       A = r2x 

 (ii) P = 20 implies 
x

r

+

=

1

10
 

  so A = 
2

2

)1(

100

1

10

x

x

x

x +
=









+
   AG 

 (iii) Use quotient rule 

  
2

4 3

d 100(1 ) 200 (1 ) 100(1 )

d (1 ) (1 )

A x x x x

x x x

 + − + −
= = 

+ + 
 

  Set equal to zero and find x = 1 
 

Attempt to show with first differential test that it 
is max.  
Completely correct solution 

B1  
B1    [2] 
 

M1  
 
 

A1    [2] 
 
 
M1  
A1  
A1  
 
 

M1  
 

A1    [5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[9] 

 

 
 

r = f(x) 
 
 
 
 
 
 
 
 

Allow ±1 
 

Or equivalent 
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10 (i) (a) ln(1 + ex)  
                                             + c 
 
  (b) ln(1 + eln3) – ln(1 + e0) 
    = ln 4 – ln 2 
                      Use log rule correctly 
   = ln 2 CAO 
 
 (ii) (a) Make substitution, including attempt at 

changing dx to du. 
Attempt to simplify to obtain… 

   
2

1
d

u

u

u

−

∫  

   =
2

1 1
du

u u

−∫    Deal with integrand,  

   = c

u

u ++
1

)ln(  

   = 
1

ln(1 e )
1 e

x

x

c+ + +

+

    CAO 

 (b) V = 
2

ln3

ln3

e
d

1 e

x

x

xπ
−

 
 

+ 
∫    and attempt to integrate 

            =
ln3

1

2

ln3

1
ln(1 e ) (ln3 )

1 e

x

x

π π

−

 
+ + = − + 

 

B1  
B1   [2] 
 
M1  
  

M1  
A1    [3] 
 

M1  
 
 

A1  
 

 

M1  
 

 
√A1  

 

A1   [5] 
 
 

M1  
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[12] 

 
 
 
Use of limits 
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11 (i) 
df

dt
= 2cost – 2sin2t 

              = 2 cost – 4sintcost 
              = 2cost(1 – 2sint) 
 
 (ii) Find local maxima/minima 
   f`(x) = 0 implies x = ππππ

6

5

6

1

2

3

2

1
,,,  

  Values of f                  1,   –3,  1.5, 1.5 
 
  Values of f at endpoints  
  1, 1 
 
  Hence range is [–3, 1.5]  
 
 (iii) Substitute for x and y, and multiply out: 

  

2 2

2 2

2 2

2 2 2 2

(2cos sin 2 ) (2sin cos2 )

4cos 4cos sin 2 sin 2

4sin 4sin cos2 cos 2

4(cos sin ) (cos 2 sin 2 )

4(cos sin 2 sin cos2 )

5 4sin( 2 ) 5 4sin3

t t t t

t t t t

t t t t

t t t t

t t t t

t t t

+ + +

= + +

+ + +

= + + +

+ +

= + + = +

 

 
 (iv) x2 + y2 = r2 is a circle centre the origin 
        5 + 4sin3t [ ]9,1∈  
 
  so C lies between and on circles of radius 1 and 3. 
 

 (v) 
d d d

d d d

y y x

x t t
= ÷  

            
tt

tt

2cos2sin2

2sin2cos2

+−

−
=  

  at t = 0, 
d 2 0

1
d 0 2

y

x

−
= =

− +

 

 

M1  
 
  

A1    [2] 
 
M1  
 

A1  
 

A1  
 

B1  
 
 

A1   [5] 
 
 
 
 
 

M1  
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A1   [3] 
 
 

B 0, 1, 2 
 

    
 

 

 

M1  
 

A1  
 

A1   [3] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[15] 

 

kcost + msin2t 

 

AG 
 
 
 

Any four 
 

All eight 
 
 
 
 
 
 
 
 
 
 

Including cross-terms 
 
 

Pythagorean identity OR 
addition formula  
 

 

AG 
 

Either statement B1 
Both and conclusion B2 
 

 

 

 

 

 

 

tdtc

tbta

2cossin

2sincos

+

+
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