MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9794 MATHEMATICS

9794/02

Paper 2 (Pure Mathematics 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' v		Syllabus	Paper		
		Pre-U – May/June 201		9794	02		
1	., .	ing the quadratic formula or equivalent,				up to 1 erro	r
	$x = \frac{8 \pm 1}{2}$	$\frac{\sqrt{64-16}}{2} = 4 \pm 2\sqrt{3}$	A1	[2]			
	(ii) $(6+2)$	$\overline{3}(2-\sqrt{3}) = 12-6\sqrt{3}+4\sqrt{3}-2\sqrt{3}\sqrt{3}$	M1			Multiply ou	t
		$= 12 - 6\sqrt{3} + 4\sqrt{3} - 6$	B1			$\sqrt{3}\sqrt{3} = 3$	
		$= 6 - 2\sqrt{3}$	A1	[3]	[5]		
2	(i) (a) AB	$=\sqrt{6^2+8^2}=10$	M1 A1	[2]		Use Pythag	oras
	(b) Mi	dpoint of AB is $(6, -3)$	B1	[1]			
	(c) (<i>x</i> -	$(-6)^2 + (y+3)^2 = 25$ AEF	$\begin{array}{c} \sqrt{B1} \\ \sqrt{B1} \\ \sqrt{B1} \end{array}$	[3]		ft <i>their</i> valu (b)	es from (a) +
	Use of y	t of AC is -0.5 y = mx + c or equivalent d equation: $y = -\frac{1}{2}x + \frac{11}{2}$	M1 M1 A1	[3]	[9]	$\frac{\Delta y}{\Delta x}$	
3	$\int_0^1 (e^x - x) dx$	$= \left[e^x - \frac{1}{2} x^2 \right]_0^1$	M1			$ke^{x} + mx^{2}$	
			A1 M1			Use of limit	
		$= e - \frac{3}{2}$	A1	[4]	[4]	Without $+ a$	
4	$(2x-1)\log 2$	ams and apply log rule = log5 make x the subject	M1 A1 M1			Up to 1 erro	or
	Obtain $x = \frac{1}{2}$	$\frac{1}{\log 4} = 1.66096 \text{ AEF}$	A1	[4]	[4]		
5	• /	ve through the origin, showing tions with the <i>x</i> -axis at (0), π and 2π .	B1	[1]			
	x-interce	we translated in the negative x-direction epts $\frac{5}{6}\pi$, $\frac{11}{6}\pi$, y-intercept 0.5 and rical about the x-axis.	M1 A1	[2]	[3]		
6	d =	= 5, u_5 = 37 implies $4d$ = 32 8 = $8n - 3$ AEF ft <i>their d</i>	M1 A1 M1 √A1	[4]		seen in eith	er part
	(b) $S_n =$	$=\frac{n}{2}(2+8n)$ AEF ft their d	$\stackrel{M1}{\sqrt{A1}}$	[2]			
	(ii) $S_{25} - S_4$	= 2525 - 68 = 2457	M1 A1	[2]	[8]	Or equivale	nt

	Page 3	Mark Scheme: Teachers'	S	Syllabus	Paper		
		Pre-U – May/June 20		9794	02		
7		product rule $e^{-2x} - 2(2x - 3)e^{-2x}$ $x)e^{-2x}$	M1 A1 A1	[3]			
	(ii) $\frac{\mathrm{d}y}{\mathrm{d}x} \ge 0$ s y is increase.	seen easing when $x \le 2$.	B1 B1	[2]	[5]		
8	Separate vari $\int \frac{-1}{y^2} dy = \int x^3$	ables, prior to integration: dx	M1 A1				
	-	(+c) pression including c and solve = $\frac{4}{x^4 + 1}$ AEF	A1 A1 M1 A1	[6]	[6]		
9	so $A = \left(\right)$	mplies $r = \frac{10}{1+x}$ $\left(\frac{10}{1+x}\right)^2 x = \frac{100x}{(1+x)^2}$ AG	B1 B1 M1 A1	[2]		$r = \mathbf{f}(x)$	
	Set equa Attempt is max.	thent rule $\frac{0(1+x)^2 - 200x(1+x)}{(1+x)^4} \left[= \frac{100(1-x)}{(1+x)^3} \right]$ I to zero and find $x = 1$ to show with first differential test that it rely correct solution	M1 A1 A1 M1 A1	[5]	[9]	Allow ±1 Or equivale	nt

Page 4			Mark Scheme: Teachers' ve	S	Syllabus	Paper			
				Pre-U – May/June 2012				9794	02
10	(i)	(a)	ln(1	$(+e^x)$ + c	B1 B1	[2]			
		(b)	· ·	$(1 + e^{\ln 3}) - \ln(1 + e^{0})$ $(1 + e^{1}) + \ln 2$	M1			Use of limit	S
				e log rule correctly A 2 CAO	M1 A1	[3]			
	(ii)	(a)	cha	ke substitution, including attempt at nging dx to du .	M1				
				to simplify to obtain $\frac{-1}{u^2} du$	A1				
				$\frac{1}{u} - \frac{1}{u^2} du$ Deal with integrand,	M1				
				$n(u) + \frac{1}{u} + c$	√A1				
				$h(1+e^x) + \frac{1}{1+e^x} + c CAO$	A1	[5]			
	(b)			$\int_{1}^{13} \left(\frac{e^x}{1+e^x}\right)^2 dx$ and attempt to integrate	M1				
		$=\pi$	ln(1	$(+e^{x}) + \frac{1}{1+e^{x}} \Big]_{-\ln 3}^{\ln 3} = \pi (\ln 3 - \frac{1}{2})$	A1	[2]	[12]		

Page 5		e 5	Mark Scheme: Teach	S	Syllabus	Paper			
			Pre-U – May/Jur		9794	02			
						[
11	(i)		ost - 2sin2t	M1			$k\cos t + m\sin t$	n2 <i>t</i>	
			$- 4 \sin t \cos t$ 1 - 2 sint)	A1	[2]		AG		
	(ii)		ral maxima/minima) implies $x = \frac{1}{2}\pi, \frac{3}{2}\pi, \frac{1}{6}\pi, \frac{5}{6}\pi$ of f 1, -3, 1.5, 1.5	M1 A1 A1			Any four All eight		
		Values o 1, 1	of f at endpoints	B1					
		Hence ra	ange is [-3, 1.5]	A1	[5]				
	(iii)	$(2\cos t -$	te for x and y, and multiply out: + $\sin 2t$) ² + $(2\sin t + \cos 2t)^2$ t + 4 cost sin 2t + sin ² 2t						
			$t^{4} + 4\sin t\cos 2t + \cos^{2} 2t$ $t^{2} t + \sin^{2} t + (\cos^{2} 2t + \sin^{2} 2t)$	M1			Including cr	oss-terms	
			sin 2t + sin t cos 2t	DM1			Pythagorear addition for	n identity OR mula	
		= 5 + 4s	$in(t+2t) = 5 + 4\sin 3t$	A1	[3]		AG		
	(iv)		r^{2} is a circle centre the origin $3t \in [1,9]$	В 0,	1,2		Either stater Both and co	nent B1 nclusion B2	
		so C lies	s between and on circles of radius 1	and 3.					
	(v)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}$ $2\mathrm{co}$		M1			$\frac{a\cos t + b\sin t}{c\sin t + d\cos t}$		
		$=\frac{1}{-2 \operatorname{si}}$	$\frac{st - 2\sin 2t}{\ln t + 2\cos 2t}$	A1					
		at $t = 0$,	$\frac{dy}{dx} = \frac{2-0}{-0+2} = 1$	A1	[3]	[15]			