MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9794 MATHEMATICS

9794/02
Paper 2 (Pure Mathematics 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9794	02

1 (i) Using the quadratic formula or equivalent, $x=\frac{8 \pm \sqrt{64-16}}{2}=4 \pm 2 \sqrt{3}$ (ii) $\begin{aligned} (6+2 \sqrt{3})(2-\sqrt{3}) & =12-6 \sqrt{3}+4 \sqrt{3}-2 \sqrt{3} \sqrt{3} \\ & =12-6 \sqrt{3}+4 \sqrt{3}-6 \\ & =6-2 \sqrt{3} \end{aligned}$		[5]	up to 1 error Multiply out $\sqrt{3} \sqrt{3}=3$
2 (i) (a) $A B=\sqrt{6^{2}+8^{2}}=10$ (b) Midpoint of $A B$ is $(6,-3)$ (c) $(x-6)^{2}+(y+3)^{2}=25 \mathrm{AEF}$ (ii) Gradient of $A C$ is -0.5 Use of $y=m x+c$ or equivalent Required equation: $y=-\frac{1}{2} x+\frac{11}{2}$	M1 A1 $[2]$ B1 $[1]$ $\sqrt{ }$ B1 لB1 لB1 $[3]$ M1 M1 A1 $[3]$	[9]	Use Pythagoras ft their values from (a) + (b) $\Delta y / \Delta x$
$3 \quad \int_{0}^{1}\left(\mathrm{e}^{x}-x\right) \mathrm{d} x=\left[\mathrm{e}^{x}-\frac{1}{2} x^{2}\right]_{0}^{1}$ $=e-\frac{3}{2}$	$\begin{array}{lr} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & {[4]} \end{array}$	[4]	$k \mathrm{e}^{x}+m x^{2}$ Use of limits Without $+c$
4 Take logarithms and apply log rule $(2 x-1) \log 2=\log 5$ Rearrange to make x the subject Obtain $x=\frac{1}{\log 4}=1.66096 \ldots$ AEF	$\begin{array}{lr} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & {[4]} \end{array}$	[4]	Up to 1 error
5 (i) Sine wave through the origin, showing intersections with the x-axis at $(0), \pi$ and 2π. (ii) Sine wave translated in the negative x-direction x-intercepts $\frac{5}{6} \pi, \frac{11}{6} \pi, y$-intercept 0.5 and symmetrical about the x-axis.	B1 $[1]$ M1 A1 $[2]$	[3]	
6 (i) (a) $\begin{aligned} & u_{1}=5, u_{5}=37 \text { implies } 4 d=32 \\ & d=8 \\ & u_{n}=8 n-3 \text { AEF } \mathrm{ft} \text { their } d \end{aligned}$ (b) $S_{n}=\frac{n}{2}(2+8 n)$ AEF ft their d (ii) $\begin{aligned} S_{25}-S_{4} & =2525-68 \\ & =2457 \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { VA1 } & {[4]} \\ \text { M1 } & \\ \text { VA1 } & {[2]} \\ \text { M1 } & \\ \text { A1 } & {[2]}\end{array}$	[8]	seen in either part Or equivalent

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9794	02

7 (i) Attempt product rule $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \mathrm{e}^{-2 x}-2(2 x-3) \mathrm{e}^{-2 x} \\ & =(8-4 x) \mathrm{e}^{-2 x} \end{aligned}$ (ii) $\frac{\mathrm{d} y}{\mathrm{~d} x} \geq 0$ seen y is increasing when $x \leq 2$.	$\begin{array}{lr} \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & {[3]} \\ & \\ \text { B1 } & \\ \text { B1 } & {[2]} \end{array}$	[5]	
8 Separate variables, prior to integration: $\begin{align*} & \int \frac{-1}{y^{2}} \mathrm{~d} y=\int x^{3} \mathrm{~d} x \\ & \frac{1}{y}=\frac{1}{4} x^{4} \tag{+c} \end{align*}$ Subs into expression including c and solve $c=\frac{1}{4}$ so $y=\frac{4}{x^{4}+1} \quad$ AEF	$\begin{array}{lll}\text { M1 } & \\ \text { A1 } & \\ \\ \text { A1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & {[6]}\end{array}$	[6]	
9 (i) $\begin{aligned} & P=2 r+2 r x \\ & A=r^{2} x \end{aligned}$ (ii) $P=20$ implies $r=\frac{10}{1+x}$ so $A=\left(\frac{10}{1+x}\right)^{2} x=\frac{100 x}{(1+x)^{2}} \quad$ AG (iii) Use quotient rule $\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{100(1+x)^{2}-200 x(1+x)}{(1+x)^{4}}\left[=\frac{100(1-x)}{(1+x)^{3}}\right]$ Set equal to zero and find $x=1$ Attempt to show with first differential test that it is max. Completely correct solution	B1 B1 [2] M1 A1 [2] M1 A1 A1 M1 A1 $[5]$	[9]	$r=\mathrm{f}(x)$ Allow ± 1 Or equivalent

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9794	02

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9794	02

11 (i) $\frac{\mathrm{df}}{\mathrm{d} t}=2 \cos t-2 \sin 2 t$
$=2 \cos t-4 \sin t \cos t$
$=2 \cos t(1-2 \sin t)$
(ii) Find local maxima/minima
$\mathrm{f}^{\prime}(x)=0$ implies $x=\frac{1}{2} \pi, \frac{3}{2} \pi, \frac{1}{6} \pi, \frac{5}{6} \pi$
Values of $\mathrm{f} \quad 1,-3,1.5,1.5$
Values of f at endpoints
1, 1
Hence range is $[-3,1.5]$
(iii) Substitute for x and y, and multiply out:
$(2 \cos t+\sin 2 t)^{2}+(2 \sin t+\cos 2 t)^{2}$
$=4 \cos ^{2} t+4 \cos t \sin 2 t+\sin ^{2} 2 t$
$+4 \sin ^{2} t+4 \sin t \cos 2 t+\cos ^{2} 2 t$
$=4\left(\cos ^{2} t+\sin ^{2} t\right)+\left(\cos ^{2} 2 t+\sin ^{2} 2 t\right)$
$+4(\cos t \sin 2 t+\sin t \cos 2 t)$
$=5+4 \sin (t+2 t)=5+4 \sin 3 t$
(iv) $x^{2}+y^{2}=r^{2}$ is a circle centre the origin
$5+4 \sin 3 t \in[1,9]$
so C lies between and on circles of radius 1 and 3 .
(v) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$
$=\frac{2 \cos t-2 \sin 2 t}{-2 \sin t+2 \cos 2 t}$
at $t=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2-0}{-0+2}=1$

M1		$k \cos t+m \sin 2 t$
A1 [2]		AG
M1		
A1		Any four
A1		All eight
B1		
A1 [5]		
M1		Including cross-terms
DM1		Pythagorean identity OR addition formula
A1 [3]		AG
B $0,1,2$		Either statement B1 Both and conclusion B2
M1		$\frac{a \cos t+b \sin 2 t}{c \sin t+d \cos 2 t}$
A1		
A1 [3]	[15]	

