MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9794 MATHEMATICS

9794/02 Paper 2 (Pure Mathematics and Mechanics), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	$\mathbf{9 7 9 4}$	$\mathbf{0 2}$

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9794	02

	Attempt to solve $c=1($ or $\mathrm{c}<1)$ for at least one drug, and obtain a solution. Obtain 54.9 (hours) for Antiflu;	M1	
		A1	
	Obtain 23.0 (hours) for Coldcure.	A1	[3]
(ii)	Two decaying exponentials in the first quadrant showing	M1	
	correct intercepts on the c-axis and crossing for some $\mathrm{t}>0$.	A1	[2]
(iii)	Assume additive nature of the concentrations:	M1	
	$5 \mathrm{e}^{-0.07 \times 30}+5 \mathrm{e}^{-0.07 \times 10}=3.10$.	A1	[2]
6 (i)	$\mathrm{d} u=2 \mathrm{x} \mathrm{d} x$ or equivalent used	M1	
	Substitute to obtain $\int \frac{1}{2} \mathrm{e}^{-\frac{1}{2} u} \mathrm{~d} u$	A1	
	$\text { Obtain }\left[-\mathrm{e}^{-\frac{1}{2} u}\right]$	A1	
	Evaluate: 0.5 WWW	A1	[4]
	SC For 0.5 without working - B2		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=1 \times \mathrm{e}^{-\frac{1}{2} x^{2}}+x \times(-x) \times \mathrm{e}^{-\frac{1}{2} x^{2}}$	M1 A1	
	Equate to zero and find at least one point	M1	
	Stationary points $\left(1, \mathrm{e}^{-0.5}\right) ;\left(-1,-\mathrm{e}^{-0.5}\right)$.	A1	[4]
$7 \quad$ (i)	(a) Not invertible	B1	
	Not 1-1 or equivalent	B1	[2]
	(b) (Minimum value of -1 at $x=1$)	B1	
	$-1 \leq \mathrm{f}(x)$	B1	[2]
	[B1 for correct interval; B1 for correct inequality]		
	(a) $\operatorname{gh}(x)=\sin ^{2} x$.	B1	
	Obtain $\frac{1}{2}(1-\cos 2 x)$ with some working AG	B1	[2]
	(b) Sine wave	M1	
	Period of π	A1	
	Completely correct	A1	[3]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9794	02

8 (i)
(a) $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=1-\cos \theta$

B1

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} \theta}=\sin \theta \\
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} \theta} / \frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{\sin \theta}{1-\cos \theta} \\
& =\frac{2 \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta}{2 \sin ^{2} \frac{1}{2} \theta}=\cot \frac{1}{2} \theta
\end{aligned}
$$

(b) Rearranging $y=x$ to give

$$
\begin{aligned}
\theta & =1+\sin \theta-\cos \theta \\
& =1+A \sin (\theta-\alpha)
\end{aligned}
$$

where $A=\sqrt{2}$
and $\alpha=\frac{\pi}{4}$

Change of sign implies root:

$$
\left(\frac{\pi}{2}-2(\text { negative }) \text { and } \pi-2(\text { positive })\right)
$$

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}}{\mathrm{~d} \theta}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \times \frac{\mathrm{d} \theta}{\mathrm{~d} x} \quad \text { or equivalent }
$$

$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0 \Rightarrow y=\frac{3}{4}$

$$
=\frac{2(2 \cos \theta-1)}{(2-\cos \theta)^{3}} \quad \text { AEF, unsimplified }
$$

4

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9794	02

$9 \quad$ (i) $\quad P$ has x-coordinate k.
Region R has area $\frac{1}{2} k \times k^{2}-\int_{0}^{(k)} x^{2} \mathrm{~d} x$ or $\int_{0}^{(k)} k x-x^{2} d x$
$=\frac{1}{2} k^{3}-\frac{1}{3} k^{3}$
$=\frac{1}{6} k^{3} \quad \mathrm{AG}$

$$
=\left[\frac{1}{2} k x^{2}-\frac{1}{3} x^{3}\right]_{0}^{a}
$$

$$
\Rightarrow k^{3}-6 k a^{2}+4 a^{3}=0 \quad \mathrm{AG}
$$

OR:
Differentiate the implicit equation wrt a or k
$3 k^{2} \frac{\mathrm{~d} k}{\mathrm{~d} a}-12 a k-6 a^{2} \frac{\mathrm{~d} k}{\mathrm{~d} a}+12 a^{2}=0$ or $3 k^{2}-12 a \frac{\mathrm{~d} a}{\mathrm{~d} k} k-6 a^{2}+12 a^{2} \frac{\mathrm{~d} a}{\mathrm{~d} k}=0$
Relate connected rates of change
Make substitutions and obtain $\frac{\mathrm{d} a}{\mathrm{~d} t}=1$.
(iv) (The formula $\frac{\mathrm{d} a}{\mathrm{dt}}=\frac{k^{2}-2}{2(k-1)}$ may appear $)$

Attempt to factorise $k^{3}-6 k+4$ with linear factor $(k-2)$
Obtain $(k-2)\left(k^{2}+2 k-2\right)$
Solve quadratic factor and obtain either or both of $k= \pm \sqrt{3}-1$
Correctly substitute into derivative formula and attempt to simplify
Obtain either or both of $\frac{\mathrm{d} a}{\mathrm{~d} t}=1 \pm \sqrt{3}$.

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9794	02

10 (i) Any valid method, for example
$A B . A C=(-4 \mathbf{i}+3 \mathbf{k}) .(3 \mathbf{i}+4 \mathbf{k})$
$=-12+12=0$ Hence result.
A1 [2]
(ii) Resolving along $A B: T_{A B}=20 \cos \left(\tan ^{-1} \frac{4}{3}\right)$

Obtain 12N.
Resolving along $A C: T_{A C}=20 \sin \left(\tan ^{-1} \frac{4}{3}\right)=16 \mathrm{~N}$
A1 [3]
SC Both answers either unassigned or swapped - B1
(iii) The vector tension is 12 x unit vector in $A B$ direction

Or $=-a \mathbf{i}+b \mathbf{j}$ where $\frac{a}{b}=\frac{4}{3}$ and $a^{2}+b^{2}=\left(\text { their } T_{A B}\right)^{2}$
11 (i) Use of $x=V t \cos \theta$ and $y=V t \sin \theta-\frac{1}{2} g t^{2}$
Solving $y=0$ for t and substitute in x formula
$R=\frac{2 V^{2} \sin \theta \cos \theta}{g}\left(=\frac{V^{2} \sin 2 \theta}{g}\right)$
A1 AG
(ii) (symmetry of the trajectory) implies $R=100 \mathrm{~m}$
(iii) $V=\sqrt{1000} \quad(=10 \sqrt{10}) \mathrm{ms}^{-1} \quad(=\sqrt{g \times \text { their } R})$

Solving
$30=10 \sqrt{10 t} \sin \frac{\pi}{4}$
Obtain $t=\frac{3}{\sqrt{5}}$ or $t=\frac{x}{V \cos \theta}$ and substitute later
Obtain $h=21 \mathrm{~m}$

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9794	02

12 (i) All forces shown: Applied, weight and reaction.
(ii) Net force up the slope $20-20 \sin 30=10(\mathrm{~N})$

Use 'Force $=$ mass \times acceleration' $\Rightarrow>=5 \mathrm{~ms}^{-2}$
Applying 'suva' with $u=0$ and $a=5$
$v=5 t$.
(iii) Let U and $V(V>U)$ be the speeds of the particles up the slope after the collision.

An attempt at both of
COM: $2 \times 15-1 \times 5=2 \times U+1 \times V$
NEL: $0.2 \times(15-(-5))=V-U$
Obtain $U=7 \mathrm{~ms}^{-1}$
'suva' gives $v=7-5 T$, where T is time after impact.
A1V
13 (i) As the system is in equilibrium, the tension in the string is $T=m g$
Resolving at right angles to the plane:
$R+T \sin \alpha=2 m g \cos \alpha$
giving $R=m g(2 \cos \alpha-\sin \alpha)$.
A1 AG
(ii) By implication $\alpha \leq 45^{\circ}$ (condone boundary case only)
$\cos \alpha \geq \frac{1}{\sqrt{2}} ; \sin \alpha \leq \frac{1}{\sqrt{2}}$
$R \geq m g\left(\frac{2}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)$
(iii) Resolving up the slope
$F=2 m g \sin \alpha-T \cos \alpha=m g(2 \sin \alpha-\cos \alpha)$
For this to be positive
and combined with first line of solution of (ii)
$0.5<\tan \alpha \leq 1$
A1 AG
(iv) Using $F=\mu R$
$\mu=\frac{2 \sin \alpha-\cos \alpha}{2 \cos \alpha-\sin \alpha}=\frac{2 \tan \alpha-1}{2-\tan \alpha}$
Max value of μ is 1 when $\tan \alpha=1$.

