## MAXIMUM MARK: 100

| Question Number | Answer |  | Max marks |
| :---: | :---: | :---: | :---: |
| 1 (a) | $\begin{equation*} \mathrm{n}(\mathrm{Mg})=9.0 \mathrm{~g} / 24.3 \mathrm{~g} \mathrm{~mol}^{-1}=0.37 \mathrm{~mol} \tag{1} \end{equation*}$ <br> Allow two or more significant figures |  | [1] |
| (b) | $\begin{align*} & \mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right) \text { reacted }=2 \times \mathrm{n}(\mathrm{Mg})=\underline{0.74} \mathrm{~mol}  \tag{1}\\ & \text { Mass of water reacted }=0.74 \mathrm{~mol} \times 18 \mathrm{~g} \mathrm{~mol} \\ & \text { Mass of excess water }=30 \mathrm{~g}-13.3 \mathrm{~g}=16.3 \mathrm{~g}  \tag{1}\\ & \text { Allow two or more significant figures } \end{align*}$ |  | [2] |
| (c) | Vol of $\mathrm{H}_{2}=0.37 \mathrm{~mol} \times 24 \mathrm{dm}^{3} \mathrm{~mol}^{-1}=\underline{8.9} \mathrm{dm}^{3}$ <br> Allow two or more significant figures |  | [1] |
| (d) | $\Delta_{\mathrm{r}} H^{\ominus}=-924.5 \mathrm{~kJ} \mathrm{~mol}^{-1}-\left(2 \times-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)=-352.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ 1 mark for correct signs; 1 mark for multiplying value for water by 2 Allow two or more significant figures |  | [2] |
| (e) | Heat energy $=352.9 \mathrm{~kJ} \mathrm{~mol}^{-1} \times 0.37 \mathrm{~mol}=\underline{131} \mathrm{~kJ}$ <br> Allow two or more significant figures |  | [1] |
| (f) | Heat energy $=(60-15) \mathrm{K} \times 150 \mathrm{~g} \times 4.2 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}=\underline{28} \mathrm{~kJ}$ Allow up to 4 significant figures | (1) | [1] |
| (g) | The same amount of heat energy is released from the lumps The rate of reaction (or the rate of heat generation) is slower and so a lower temperature will be reached (due to imperfect insulation)/ <br> Allow temperature reached being the same if there is the stated assumption that the system is perfectly insulated <br> Valid alternative: not all of the magnesium reacts as it becomes covered in insoluble magnesium hydroxide Therefore less energy released and lower temperature reached | (1) <br> (1) <br> (1) <br> (1) | [2] |
| (h) (i) | $\begin{aligned} & \mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2} \\ & 7<\mathrm{pH} \leq 12 \end{aligned}$ | (1) (1) | [2] |
| (ii) | $\begin{aligned} & \mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4} \quad \mathrm{OR} \quad \mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4} \\ & 0 \leq \mathrm{pH}<7 \end{aligned}$ | (1) <br> (1) | [2] |
| (iii) | $6 \mathrm{CaO}+\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow 2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad \text { OR } \quad 3 \mathrm{CaO}+\mathrm{P}_{2} \mathrm{O}_{5} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ Ignore state symbols. | (1) | [1] |
|  |  |  | [Total: 15] |


| Question Number | Answer | Max marks |
| :---: | :---: | :---: |
| 2 (a) (i) | Energy change to break one mole of bonds in the gas phase. 1 mark for each underlined point | [3] |
| (ii) | $\Delta_{\mathrm{r}} \mathrm{H}^{\ominus}=2 \times(413+243-346-432) \mathrm{kJ} \mathrm{mol}^{-1}=-244 \mathrm{~kJ} \mathrm{~mol}^{-1}$ <br> 1 mark for bonds broken; 1 mark for bonds made; <br> 1 mark for correct sign if the answer is correct | [3] |
| (b) (i) | Energy change $=(4405+3966-(2 \times 4180)) \mathrm{cm}^{-1}=\underline{11} \mathrm{~cm}^{-1}$ | [1] |
| (ii) | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$ Superscripts must be used | [1] |
| (iii) | At least one K 4s atomic orbital labelled <br> Labelled sigma bond below labelled sigma antibond <br> (A single electron (spinning in either sense) in each atomic orbital and) two spin-paired electrons in the sigma bond Electrons must be shown with a single- or double-headed arrow | [3] |
| (iv) | The outer electron in K is closer to the nucleus than the outer electron in Rb <br> There is less shielding of the nucleus for the $K$ outer electron than the Rb outer electron (Despite the extra nuclear charge in rubidium) there is a weaker attraction of the electron to the nucleus $\begin{equation*} \text { Allow the opposite statements with respect to } \mathrm{Rb} \tag{1} \end{equation*}$ | [3] |
| (v) | Labelled Rb 5 s orbital shown higher in energy than labelled K 4 s orbital <br> Sigma bond is lower in energy than K 4s orbital and the antibond is higher in energy than the Rb 5 s orbital <br> The bonding and antibonding orbitals must be labelled for the second mark | [2] |
| (vi) | $\mathrm{E}=11 \mathrm{~cm}^{-1} \times \mathrm{h} \mathrm{c} N_{\mathrm{A}} \times 100 \mathrm{~cm} \mathrm{~m}^{-1} / 1000 \mathrm{~J} \mathrm{~kJ}^{-1}=0.13 \mathrm{~kJ} \mathrm{~mol}^{-1}$ <br> Two marks for correct answer. <br> If final answer incorrect, one mark for correct use of $N_{A}$. <br> One mark if final answer is out by a factor of $N_{\mathrm{A}}$ i.e. $2.19 \times 10^{-25}$ Allow two or more sig figs. | [2] |
|  |  | [Total: 18] |


| Question Number | Answer | Max marks |
| :---: | :---: | :---: |
| 3 (a) (i) | Point plotted corrected (must be within the correct small square in the grid) | [1] |
| (ii) | Bonding is intermediate-covalent-ionic-metallic | [1] |
| (b) (i) | $\begin{aligned} & \mathrm{NO}_{2}^{-}+3 \mathrm{e}^{-}+4 \mathrm{H}^{+} \rightarrow 1 / 2 \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \text { OR } \quad 2 \mathrm{NO}_{2}^{-}+6 \mathrm{e}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{N}_{2} \\ & +4 \mathrm{H}_{2} \mathrm{O} \\ & 1 \text { mark for correct number of electrons on the left hand side } \\ & 1 \text { mark for the rest of the balanced half equation (ignoring charge) } \end{aligned}$ | [2] |
| (ii) | $3 \mathrm{CH}_{4}+8 \mathrm{NO}_{2}^{-}+8 \mathrm{H}^{+} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{~N}_{2}+10 \mathrm{H}_{2} \mathrm{O}$ | [1] |
| (iii) | Enzyme catalysis | [1] |
| (c) (i) | Oxidation state $=\{(2 \times 112)-8\} / 36=\underline{(+) 6}$ | [1] |
| (ii) | $\left[\mathrm{Mo}_{9} \mathrm{O}_{28}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2-}$ OR $\quad\left[\mathrm{Mo}_{9} \mathrm{O}_{32} \mathrm{H}_{8}\right]^{2-}$ | [1] |
|  |  | [Total: 8] |

5

| Question Number | Answer | Max marks |
| :---: | :---: | :---: |
| 4 (a) | Carbon atom circled or otherwise indicated | [1] |
| (b) | Nucleophile <br> Allow nucleophilic or Lewis base or lone-pair donor | [1] |
| (c) | Any unambiguous structure of the hemiaminal <br> No mark if atom connectivity is incorrect, e.g. $\mathrm{OH}-\mathrm{CH}_{2} \mathrm{NH}_{2}$ | [1] |
| (d) | Addition <br> No credit for "electrophilic addition" Allow nucleophilic addition or reduction | [1] |
| (e) | Methanal (allow any carbonyl compound) | [1] |
| (f) | Hydrolysis <br> Allow hydration + elimination but not substitution + elimination | [1] |
| (g) | Methanal: FGL 2 <br> After Reaction 2: FGL 2 <br> After Reaction 3: FGL 1 <br> Accept equivalent names for the functional group levels | [3] |
| (h) (i) | Allow any unambiguous structure for $\mathbf{Z}$ | [1] |
| (ii) | 2-methylbutanal <br> Ignore incorrect use of spaces/hyphens but do not allow 2-methylbutan-1-al | [1] |
| (i) | 1 mark for a correct structure <br> 2nd mark for showing two optical isomers clearly with hashed and wedge bonds | [2] |
|  |  | [Total: 13] |

6

| Question Number | Answer | Max marks |
| :---: | :---: | :---: |
| 5 (a) | Mass of $\mathrm{HCl}=\frac{1}{4} \times 55.6 \mathrm{~mol} \times 36.5 \mathrm{~g} \mathrm{~mol}^{-1}=\underline{507} \mathrm{~g}$ <br> No sig figs or units penalties | [1] |
| (b) | Amount of $\mathrm{NaOH}=0.02475 \mathrm{dm}^{3} \times 0.0500 \mathrm{~mol} \mathrm{dm}^{-3}=$ <br> 0.0012375 mol <br> Amount of HCl in volumetric flask $=10 \times 0.0012375 \mathrm{~mol}=$ 0.012375 mol $\begin{equation*} [\mathrm{HCl}]=0.012375 \mathrm{~mol} / 0.00100 \mathrm{dm}^{3}=\underline{12.4} \mathrm{~mol} \mathrm{dm}^{-3} \tag{1} \end{equation*}$ <br> Final answer to 3 sig figs | [4] |
| (c) (i) | $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaCl} \rightarrow \mathrm{HCl}+\mathrm{NaHSO}_{4}$ <br> Ignore state symbols <br> Allow $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaCl} \rightarrow 2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{SO}_{4}$ | [1] |
| (ii) | $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HBr} \rightarrow \mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ <br> Ignore state symbols <br> Allow $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HBr} \rightarrow \mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$ | [1] |
| (iii) | Sulfuric acid is the oxidising agent <br> No credit for $S$ being the oxidising agent <br> The oxidation number of bromine increases (from -1 to 0 ) OR the oxidation number of sulfur decreases (from +6 to +4 ) | [2] |
| (d) (i) | Bond strength decreases because the bonds gets longer OR because there is greater shielding of the bonding electrons from the halogen nucleus due to the additional inner shells of electrons No credit for answers based on electronegativity or ionic radii | [1] |
| (ii) | Acidic strength increases because the $\mathrm{H}-\mathrm{Hal}$ bond gets weaker | [1] |
| (iii) | Increasing boiling point for $\mathrm{HCl} \rightarrow \mathrm{HBr} \rightarrow \mathrm{HI}$ due to increasing van der Waals / instantaneous dipole - induced dipole forces HF boiling point higher than HCl due to hydrogen bonding | [2] |
|  |  | [Total: 13] |


| Question Number | Answer | Max marks |
| :---: | :---: | :---: |
| 6 (a) | Molecular formula $=\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}$ | [1] |
| (b) | Correct structure <br> Name = but-2-ynoic acid <br> No mark for name if it is inconsistent with the structure given | [2] |
| (c) | $\begin{aligned} & \% C=(24 / 42) \times 100 \%=\underline{57.1} \% \\ & \% H=(2 / 42) \times 100 \%=\underline{4.8 \%} \\ & \% \mathrm{O}=(16 / 42) \times 100 \%=\underline{38.1} \% \end{aligned}$ <br> 2 marks all correct, 1 mark for two out of three correct Don't penalise two or more significant figures Allow 5\% for H | [2] |
| (d) | $\mathrm{m} / \mathrm{z}=84$ | [1] |
| (e) (i) | Strong absorption between 1640 and $1750 \mathrm{~cm}^{-1}$ <br> Very broad absorption between 2500 and $3300 \mathrm{~cm}^{-1}$ | [2] |
| (ii) | Sodium chloride discs would dissolve | [1] |
| (f) |  | [1] |
|  |  | [Total: 10] |


| Question Number | Answer | Max marks |
| :---: | :---: | :---: |
| 7 (a) | alkane $\rightarrow$ ester $\rightarrow$ alcohol | [1] |
| (b) | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}+7 / 2 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ or equation multiplied through by 2 <br> Accept a structural or displayed formula for the ester but not a skeletal formula | [1] |
| (c) (i) | Use a measuring cylinder to add $300 \mathrm{~cm}^{3}$ of water to the copper can <br> Measure initial mass of spirit burner (+ester) on mass balance <br> Measure initial temperature of water in copper can using thermometer <br> Light the wick on the spirit burner (Not 'burn the ester') <br> Extinguish the spirit burner when the temperature of the water has risen by 10 degrees <br> Reweigh the spirit burner <br> Subtract the final mass from the initial mass to determine mass of ester burnt | [Max. 6] |
| (ii) | $\begin{align*} & \text { Thermal energy added to water }=4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1} \times 10.0 \mathrm{~K} \times 300 \mathrm{~g} \\ & =12540 \mathrm{~J}  \tag{1}\\ & \text { Thermal energy added to copper }=0.384 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1} \times 10.0 \mathrm{~K} \times 250 \mathrm{~g} \\ & =960 \mathrm{~J}  \tag{1}\\ & \text { Total energy }=13.5 \mathrm{~kJ}(3 \text { s.f. required }) \end{align*}$ <br> Answer must be in kJ , not Joules, but no penalty for omitting to write kJ | [3] |
| (iii) | Amount of ester $=0.980 \mathrm{~g} / 74.0 \mathrm{~g} \mathrm{~mol}^{-1}=\underline{0.0132} \mathrm{~mol}$ <br> Theoretical energy released $=0.0132 \mathrm{~mol} \times 1592.1 \mathrm{~kJ} \mathrm{~mol}^{-1}=$ 21.1 kJ <br> Allow ecf with amount of ester <br> 3 s.f. required in final answer, but don't penalise if penalty already sustained in previous part | [2] |


| Question Number | Answer | Max marks |
| :---: | :---: | :---: |
| (iv) | Find thermal capacity of apparatus using: thermal capacity $=$ theoretical energy released / observed temperature change <br> Thermal capacity $=21.1 \mathrm{~kJ} / 10 \mathrm{~K}=\underline{2.11} \mathrm{~kJ} \mathrm{~K}^{-1}$ <br> Theoretical heat produced from combustion of ethyl ethanoate $=$ $\begin{equation*} 2.11 \mathrm{~kJ} \mathrm{~K}^{-1} \times 11.5 \mathrm{~K}=\underline{24.3} \mathrm{~kJ} \tag{1} \end{equation*}$ <br> VALID ALTERNATIVE: $13.5 \mathrm{~kJ} / 21.1 \mathrm{~kJ}=>64 \%$ of energy detected $\therefore$ Divide measured energy change by 0.64 <br> Correct calculation of measured energy change with this method as 15.5 kJ <br> No credit for a simple additative correction for the heat loss (since there was a different temperature change) <br> Amount of ethyl ethanoate $=0.948 \mathrm{~g} / 88 \mathrm{~g} \mathrm{~mol}^{-1}=\underline{0.010773 \mathrm{~mol}}$ <br> Standard enthalpy change of combustion of ethyl ethanoate $=$ $-24.3 \mathrm{~kJ} / 0.010773 \mathrm{~mol}=-2250 \mathrm{~kJ} \mathrm{~mol}^{-1}$ <br> This mark is lost if the final answer is not negative <br> 3 s.f. required in final answer, but don't penalise if s.f. penalty already sustained | [4] |
| (d) | Put a lid on the calorimeter <br> Add insulation around the side and/or top of the calorimeter <br> Stir the water in the copper pot <br> Draw hot vapour from the flame through a calorimeter using suction <br> Do repeats and take an average <br> Put a cap on the spirit burner when it isn't lit to avoid evaporative losses <br> Other sensible refinement <br> A mark for any of the above up to a maximum of four <br> Marks not awarded for: improving the thermometer comments about height of the can above the burner <br> use of a different burner or different material for the can draft excluders | [max 4] |
| (e) | The methyl ethanoate will be easier to light (more volatile) The flame will be less yellow/smoky from the methyl ethanoate (less oxygen required for complete combustion) | [2] |
|  |  | [Total: 23] |

BLANK PAGE

