MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9791 CHEMISTRY

9791/03 Paper 3 (Part B Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.theallpapers.com

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2011	9791	03

Question Number	Expected Answer	Max Marks	Rationale
1 (a) (i)	If the conditions of an <u>equilibrium</u> are changed then the system will adjust in such a manner as to <u>oppose the</u> <u>change</u>	1	ALLOW alternatives for 'oppose' e.g. 'minimise', 'counteract'
1 (a) (ii)	$K_{\rm p} = \frac{p \rm NO^2}{p \rm N_2 \times p \rm O_2}$	2	1 mark if no 'squared' or if square brackets used
1 (a) (iii)	$K_{\rm p}$ increases with increasing T Increasing T favours endothermic reaction OR inc T favours forward reaction OR inc T favours NO production (so forward reaction must be endothermic)	1 1	
1 (a) (iv)	No change in equilibrium position Equal number of moles of gas on each side	1 1	
1 (b) (i)	T_2 curve must have its peak to the <u>right</u> and <u>lower</u> than T_1 T_2 curve must <u>start at '0,0'</u> <u>only cross T_1 once</u> and <u>not touch</u> <u>T_1 curve</u> at RHS <i>Number of molecules</i> labelled on vertical axis <i>Energy</i> labelled on horizontal axis	1 1 1 1	IGNORE 'kinetic'
1 (b) (ii)	Labelled E_a on horizontal axis with line up to top curve AND reference to greater area under curve above E_a for T ₂ curve More molecules with $E > E_a$ at higher T Greater proportion of collisions successful	1 1 1	
Total		[14]	

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2011	9791	03

	Question Number	Expected Answer	Max Marks	Rationale
2	(a)	$V\alpha T$ or V/T = Constant	1	ALLOW $V_1/T_1 = V_2/T_2$
2	(b) (i)	Forces of <u>attraction and repulsion between particles</u> OR <u>intermolecular</u> forces Particles have volume	1 1	Both needed if just 'forces' 'Particle' owtte must be seen at least once
2	(b) (ii)	$V = nRT/p = \frac{1 \times 8.31 \times 273}{1 \times 10^5} = 0.0227 \text{ m}^3 = 22.7 \text{ (dm}^3)$ (1) (1)	2	
2	(b) (iii)	At high pressures the molecular size OR the forces of <u>repulsion</u> become increasingly significant Increase in pressure is accompanied by a <u>less than ideal</u> <u>decrease in volume</u>	1	
2	(b) (iv)	Volume effect is greater the bigger the particles	1	DO NOT ALLOW 'mass'
2	(c)	Intermolecular forces of <u>attraction</u> (are significant when KE of molecules is relatively low hence) Increase in pressure causes <u>greater than ideal</u> decrease in volume	1	
То	otal		[10]	

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2011	9791	03

	Question Number	Expected Answer	Max Mark	Rationale
3	(a)	A: Electrons B: Protons/Hydrogen ions/H ⁺	1 1	
3	(b)	platinum (palladium/nickel/metal hydrides)	1	
3	(c)	Cathode: $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$ Anode: $H_2 \rightarrow 2H^+ + 2e^-$	1 1	ALLOW one mark if correct equations but wrong way round ALLOW 'multiples'
3	(d) (i)	 Any two from: eliminates/reduces greenhouse gases if hydrogen comes from electrolysis of water have higher efficiency (than diesel or gas engines) much quieter operation (than internal combustion engines) maintenance simple/few moving parts 	Max 2	Advantages must relate directly to context of use in motor vehicles
3	(d) (ii)	 Any two from: reforming is technically challenging and not environmentally friendly 'refuelling' and starting times are longer driving range of cars is shorter fuel cells generally bigger/heavier than comparable batteries or engines 	Max 2	Disadvantages must relate directly to context of use in motor vehicles

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2011	9791	03

G N	uestion Number	Expected Answer	Max Mark	Rationale
3	(e) (i)	Zn(s) Zn ²⁺ (aq)	1	State symbols required
3	(e) (ii)	being oxidised = Zn being reduced = Ag_2O (or $Ag in the Ag_2O$)	1 1	DO NOT ALLOW Ag ⁺
3	(e) (iii)	$Zn + Ag_2O + H_2O \rightarrow Zn^{2+} + 2OH^- + 2Ag$	1	ALLOW Zn(OH) ₂ state symbols NOT required
3	(e) (iv)	+0.34 – (–0.76) = +1.10 V	1	
3	(e) (v)		1	ALLOW ecf from 3(e)(iv)
		$\Delta G = -nFE = -2 \times 96.5 \times 1.10 = -212(.30) \text{ kJmol}^{-1}$		
3	(e) (vi)	$\Delta G = -RT \ln K$ -212300 = -8.31 × 298 × lnK lnK = 212300/(8.31 × 298) = 85.73 K = e ^{85.73} = 1.7(1) × 10 ³⁷	1	ALLOW ecf from 3(e)(v)
To	tal		[17]	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2011	9791	03

(Question Number	Expected Answer	Max Marks	Rationale
4	(a)	12	1	
4	(b)	HCP = ABA(B) FCC/CCP = ABC(ABC)	1 + 1 1 + 1	ALLOW 'hexagonal' ALLOW 'cubic' Names are 'free-standing'; layers marks depend on names
4	(c) (i)	octahedral	1	
4	(c) (ii)	calcium; fluoride/fluorine; tetrahedral	1 1	calcium AND fluoride/fluorine both needed for first mark
4	(d) (i)	(Good agreement indicates a) high level of ionic character/low level of covalency in the ionic halides As electronegativities of Na and X are very different	1 1	
4	(d) (ii)	Difference increases from AgF to AgI with decreasing difference in electronegativity so least covalency in AgF/greatest covalency in AgI as small anion least easily polarised/large anion most easily polarised	1 1 1	

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2011	9791	03

Question Number	Expected Answer	Max Marks	Rationale
4 (e) (i)	haemoglobin	1	
4 (e) (ii)	(apo)Ferritin binds to Fe(II) and stores it as Fe(III) so it stores/controls release of iron	1 1	
4 (f)	(negative E^{e} in) 4.1 (indicates) equilibrium lies further left (than in 4.2)/tendency to produce electrons greater/Fe(OH) ₂ stronger reducing agent In acid conditions [OH] falls so equilibrium moves right/ tendency to produce electrons falls. Fe(OH) ₂ reducing power falls So Fe(II) stabilised wrt Fe(III)/chance of Fe(II) oxidation reduced	1 1 1	ora
Total		[19]	

Page 8	Page 8 Mark Scheme: Teachers' version		Paper
	Pre-U – May/June 2011	9791	03

Qı Nı	iestion imber	Expected Answer	Max Marks	Rationale
5	(a)	Carbon 1 = Alcohol Level Carbon 2 = Carboxylic Acid Level	1 1	
5	(b)	Hydrolysis Functional Group Level (of Carbons 3 and 4) is the same	1 1	
5	(c)	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2	ALLOW $-NH_2$ in place of both $-NH_3^+$ groups for 1 mark in first structure ALLOW one $-OH$ (from amide link) and one $-NH_3^+$ for 1 mark in first structure
		ОН	1	
		ОН	1	
5	(d)	C ₇ H ₁₀ O ₅	1	

Page 9	Mark Scheme: Teachers' version		Paper
	Pre-U – May/June 2011	9791	03

	Question Number	Expected Answer	Max Marks	Rationale
5	(e) (i)	HO HO HO OH	1	
5	(e) (ii)		1	
5	(e) (iii)	$H_{3}C C O O O O O O O O O O O O O O O O O O$	2	ALLOW 1 mark if only one or two acyl groups attached ALLOW 1 mark if –COOH acylated <u>as well as</u> all 3 –OH groups
5	(f)	From left to right: 1; 2 and 7; 4; 5 and 6; 3	3	4 = 3; 2 = 2; 1 = 1
5	(g) (i)	Electrophilic Addition	1	both needed

Page 10	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2011	9791	03

Question Number	Expected Answer	Max Marks	Rationale
5 (g) (ii)		1	
	Он		
5 (g) (iii)	relative stability of intermediate (carbo)cations	1	
	form E_a to	1	
Total		[21]	

Page 11	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2011	9791	03

	Question Number	Expected Answer	Max Marks	Rationale
6	(a)	Nucleophilic Addition	1	both needed
6	(b) (i)	$ \begin{array}{c} H \\ H_{3}C \xrightarrow{\delta_{4}} C \xrightarrow{O} C \xrightarrow{O} H \\ \vdots & \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ N \end{array} \xrightarrow{H_{3}C} - C \xrightarrow{O} O \xrightarrow{I} H_{3}C \xrightarrow{H_{3}C} C \xrightarrow{I} C \xrightarrow{I} N \\ \vdots & \vdots \\ N \end{array} $		
		lone pair, - charge and curly arrow on C in CN polarity of C=O curly arrow from C=O to delta –ve O lone pair on O ⁻ and curly arrow to H ⁺	1 1 1 1	ALLOW H-OSO₃H or H-OH for H ⁺
6	(b) (ii)	(product is a) racemate / equimolar mix of enantiomers	1	
6	(c) (i)	$K_{a} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]}$	1	
6	(c) (ii)	$pK_a = -\log K_a$	1	
6	(c) (iii)	decreasing pK_a means increasing acid strength	1	ALLOW pattern identification by reference to number of
		increasing electron-withdrawing character from $-CH_2Cl$ (to $-CHCl_2$) to $-CCl_3$	1	chiorines
		reduces charge density on COO ⁻ OR stabilises anion OR weakens O-H bond	1	
		so moves equilibrium to right/increases dissociation	1	DO NOT ALLOW 'easier' for 4 th mark

Page 12	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2011	9791	03

(Question Number	Expected Answer	Max Marks	Rationale
6	(d) (i)	non-superimposable mirror images	1	
6	(d) (ii)	higher <u>atomic number</u> = higher priority	1	DO NOT ALLOW reference to 'atomic mass' or 'size'
		reference to moving –H to the back R = clockwise order of priority (high to low) of remaining	1	
		groups	1	
6	(d) (iii)	The rotation of plane-polarised light	1	
6	(d) (iv)	+/- notation + = clockwise / - = anticlockwise	1	
Тс	otal		[19]	