MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9791 CHEMISTRY

9791/03
Paper 3 (Part B Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	$\mathbf{9 7 9 1}$	$\mathbf{0 3}$

Question Number	Expected Answer	Max Marks	Rationale
1 (a) (i)	(A and B) $\mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{HCO}_{3}{ }^{-}$	1	1/2 for overall equation
(ii)	$\left(\mathrm{C}\right.$ and D) $\mathrm{HCO}_{3}{ }^{+} \mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$	1	1/2 for both non-ionic
(b) (i)	methyl yellow	1	
(ii)	$\mathrm{p} \mathrm{K}_{\mathrm{a}}$ of indicator matches pH change at equivalence	1	allow $\mathrm{p} K_{\mathrm{a}}$ on vertical section of graph owtte
(iii)	from Yellow to Red	1	
(c)	$\begin{aligned} & 18.8 \times 0.200 / 1000=3.76 \times 10^{-3} \mathrm{~mol}^{\text {of } \mathrm{HNO}_{3}} \\ & \text { so amount } \mathrm{Na}_{2} \mathrm{CO}_{3}=3.76 \times 10^{-3} / 2=1.88 \times 10^{-3} \mathrm{~mol} \\ & \text { so conc } \end{aligned}=1.88 \times 10^{-3} \times 1000 / 20=0.094 \mathrm{~mol} \mathrm{dm}^{-3} .$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	allow 9.96 do not allow 10/10.0 ecf ecf
(d) (i)	$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} / 2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$	1	
(ii)	$\begin{aligned} & \mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right] \\ & {\left[\mathrm{H}_{2} \mathrm{O}\right] \text { const }} \\ & \text { negligible dissociation / equilibrium left } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	allow water is in large excess
(iii)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{ } 51.3 \times 10^{-14}=7.16 \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ & \mathrm{pH}=-\log 7.16 \times 10^{-7}=6.15 \end{aligned}$	$\begin{gathered} 1 \\ 1+1 \end{gathered}$	allow 6.14
(iv)	(endothermic) $\left[\mathrm{H}^{+}\right]$higher at higher temperature so equilibrium moves right with increased temperature / increased temperature favours endothermic change	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	allow ecf from (d)(iii)

(e)	$\begin{aligned} & 5 \times 1 / 1000=5 \times 10^{-3} \mathrm{~mol}^{2} \text { of } \mathrm{H}^{+} \\ & 0.1 \times 1.00 \times 10^{-4}=1 \times 10^{-5} \mathrm{~mol} \text { of } \mathrm{HCl} \text { in soln } \\ & 1 \times 10^{-5}+5 \times 10^{-3} \text { in } 105 \mathrm{~cm}^{3} \\ & =5.01 \times 10^{-3} / 0.105=0.0477 \mathrm{~mol} \mathrm{dm}^{-3} \\ & \mathrm{pH}=-\log 0.0477=1.32 \\ & \text { calculation of initial pH }=4.77 \\ & \text { after addition of } \mathrm{HCl} ; 0.01+5 \times 10^{-3}=0.015 \mathrm{~mol} \\ & =0.015 \times 1000 / 105=0.143 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COOH} \\ & \text { and } 0.01-5 \times 10^{-3}=0.005 \mathrm{~mol} \\ & =0.005 \times 1000 / 105=0.0476 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COO}^{-} \\ & \mathrm{pH}=\mathrm{pK} \mathrm{C}_{\mathrm{a}}-\log [\mathrm{acid}] /[\mathrm{salt}] \\ & \quad=4.77-\log 0.143 / 0.0476=4.17 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$1.32=4$ marks $4.17=4$ marks
		[25]	

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	$\mathbf{9 7 9 1}$	$\mathbf{0 3}$

2 (a) (i)	high temperature and ethanol as solvent	2	one mark for each solvent and third mark for any appropriate mention of temperature
(ii)	(lower temperature) and water as solvent	1	
(b) (i)	molecule with non-superimposable mirror-image form / molecule with 4 different groups attached to the same (C) atom / no plane of symmetry	1	do not allow molecules allow atoms in place of groups
(ii)	equimolar mixture of two enantiomers / optical isomers	1	
(iii)	stereoisomers that are not enantiomers / nonsuperimposable mirror images	1	
(iv)		2	
(c) (i)		4	
(ii)	S-(+)-butan-2-ol	2	R-(+)- butan-2-ol/S-(-)-butan-2-ol/S-(+)-propan-2-ol all = 1/2

\square

(d) (i)	$R \mathrm{R}=1^{\text {st }}$ order: Expt 1 to $2[\mathrm{RX}] \times 3=$ rate $\times 3$ so directly	1	
(ii)	proportional	1	
(iii)	$\mathrm{OH}^{-}=1^{\text {st }}$ order: Expt 1 to 3 doubling $[\mathrm{RX}]$ would double rate to 8.0×10^{-4} so doubling again due to doubling $\left[\mathrm{OH}^{-}\right]$so also directly proportional (2) rate $=k[R X]\left[\mathrm{OH}^{-}\right]$(ecf) (1) $4.0 \times 10^{-4}=k \times 0.050 \times 0.10(1)$ $\mathrm{k}=4.0 \times 10^{-4} / 0.005=0.08(1) \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}(1)$	6	
(iv)	 or	1	
		[23]	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	9791	03

3 (a) (i)	for CO change is from 2 moles of gas to 1 mole gas and 1 mole solid whereas for SiO change is from 2 moles of gas to 2 moles of solid owtte decrease in disorder / randomness is greater with SiO	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
(ii)	2 moles of solid produce 2 moles of solid owtte very little change in disorder	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
(b) (i)	$\begin{aligned} \Delta_{r} S=\Sigma S_{\text {products }}-\Sigma S_{\text {reactants }} & =(31.1+55.3)-(2 \times 50) \\ & =-13.4\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	$\begin{aligned} & +36.4=1 / 2(\text { not } \times 2) \\ & -29.5=1 / 2(\text { reversed } 55.3 \text { and } 55) \end{aligned}$
(ii)	$\begin{aligned} \Delta_{\mathrm{r}} G^{\ominus}=\Delta H-\mathrm{T} \Delta S & =-126.8-(298 \times-3.4 / 1000) \\ = & -122.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & \left(-22800 \mathrm{~J} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	```-118 ecf from 36.4 / -137.6 ecf from -29.5 allow -123 do not allow -122 units not required but must be consistent```
(c) (i)	$\begin{aligned} \Delta_{r} G^{\ominus} & =-R T \ln K_{p} \text { so } \ln K_{p}=\Delta_{r} G^{\ominus} /-R T \\ & =-120.1 \times 10^{-3} /(-8.31 \times 298)=48.50 \\ \text { so } K_{p} & =1.15 \times 10^{21} \end{aligned}$	2	$\begin{aligned} & 3.72 \times 10^{21}=1 / 2(\text { used } 122.8 \text { from } 3(\text { b) (ii) }) \\ & 1.05=1 / 2\left(\text { no } \times 10^{3}\right. \\ & \text { ignore units } \end{aligned}$
(ii)	$\begin{aligned} \Delta_{\mathrm{r}} G^{\ominus}=0 & =\Delta H-\mathrm{T} \Delta \mathrm{~S} \text { so } \Delta H=\mathrm{T} \Delta \mathrm{~S} \text { and } \mathrm{T}=\Delta H / \Delta \mathrm{S} \\ & =-172500 /-175.9=980.7 \mathrm{~K} \end{aligned}$	2	allow 981 K
(iii)	activation energy / kinetic barrier too high	1	
		[13]	

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	9791	03

$4 \quad$ (a)	Pt I N H $\frac{40.37}{195}$ $\frac{52.59}{127}$ $\frac{5.80}{14}$ $\frac{1.24}{1}$ $\frac{0.207}{0.207}$ $\frac{0.414}{0.207}$ $\frac{0.414}{0.207}$ $\frac{1.24}{0.207}$ 1.00 2.00 2.00 5.99 so EF $=\operatorname{PtI}_{2} \mathrm{~N}_{2} \mathrm{H}_{6} E F M=483=M_{\mathrm{r}}$ so $\mathrm{MF}=\operatorname{PtI}_{2} \mathrm{~N}_{2} \mathrm{H}_{6}$ (1) (1) and trans (1)	5	must see link of EFM to RFM
	bond Angle $=90^{\circ}$	1	ecf
(b)	(octahedral) e.g. $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ angle $=90^{\circ}$ (tetrahedral) e.g. $\mathrm{CoCl}_{4}{ }^{2-} \quad$ angle $=109-110^{\circ}$	3	both angles needed for third mark NB CoCl4 ${ }_{4}^{-}$doesn't exist
(c)	lobes of two orbitals directed along cartesian axes lobes of three orbitals directed between cartesian axes results in split of energy levels of d orbitals promotion of electrons between orbitals absorbs in visible region	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
		[13]	

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	9791	03

5 (a)	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{2}$	1	
(b)	$\mathbf{x}=120^{\circ} \mathbf{y}=104.5^{\circ}$	2	allow 104-105 for \mathbf{y}
(c)	$\mathbf{1}=$ carboxylic Acid Level $\quad \mathbf{2}=$ hydrocarbon Level $\mathbf{3}=$ carboxylic Acid Level	2	three $=2$ two $=1$
(d) (i)	donates pair of electrons to form covalent bond	$1+1$	
(ii)		2	
(e)	$\begin{aligned} & \mathbf{Q}=\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{OH} \\ & \mathbf{R}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \\ & \mathbf{S}=\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{NHOCCH}_{3}\right) \mathrm{CH}_{2} \mathrm{OCOCH}_{3} \\ & \mathbf{T}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCOCH} \\ & \mathbf{U}=\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \end{aligned}$ Reactions of \mathbf{Q} and \mathbf{R} with ethanoyl chloride: 2:1 ratio with \mathbf{Q} as both NH_{2} and OH acylated/ 1:1 ratio with \mathbf{R} as only one OH group acylated (1) Reaction with NH_{2} produces (secondary) amide (+HCl) (1) Reaction with OH produce ester $(+\mathrm{HCl})(1)$ ${ }^{1} \mathrm{H}$ NMR of T : three signals indicate / due to 3 H environments (1) triplet @ ~ 1.3 is protons on CH_{3} adj to CH_{2} (1) quartet @ ~ 4.1 is protons on $\mathrm{CH}_{2}\left(\right.$ adj to $\left.\mathrm{CH}_{3}\right)(1)$ singlet @ ~ 2.0 is protons on CH_{3} on $\mathrm{C}=\mathrm{O}$ (1) ${ }^{13} \mathrm{C}$ NMR of T: two signals near $20=\mathrm{Cs}$ in the two CH_{3} groups (1) signal at ~ 60 is C in CH_{2} (1) signal at ~ 170 is C in $\mathrm{C}=\mathrm{O}$ (1) ${ }^{1}$ H NMR of U: six signals indicate / due to 6 H environments (1) disappearing signal due to labile protons on ${\underline{\mathrm{NH}_{2}}}_{2}(2)$		do not allow 'peptide' ${ }^{1} \mathrm{H}$ NMR marks are independent of structures drawn except first mark ${ }^{13} \mathrm{C}$ NMR marks are independent of structures drawn
		[26]	

