MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9791 CHEMISTRY

9791/02
Paper 2 (Part A Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
Syllabus \quad Paper

1 (a) ethanol: $46 \mathrm{~g} \mathrm{~mol}^{-1}$ octane: $114 \mathrm{~g} \mathrm{~mol}^{-1}$
1 mark if both numbers correct
no penalty for incorrect sig. figs.
(b) density in $\mathrm{g} \mathrm{cm}^{-3}=2 \mathrm{~g} \mathrm{~mol}^{-1} / 24000 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}=8.3 \times 10^{-5} \mathrm{~g} \mathrm{~cm}^{-3}$ no penalty for incorrect sig. figs.
(c) zero (by definition)
award this mark if the zero is just entered in the table
(d) $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
the mark is given for indicating that it is the same as the enthalpy of formation given in the question
(e) $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{I})+25 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+9 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})(1)$
equation must be per mole of octane and correctly balanced for the first mark correct state symbols for octane, oxygen, carbon dioxide and water (1)
(f) $\Delta_{\mathrm{c}} \mathrm{H}^{\rho}$ (octane) $=8 \Delta_{\mathrm{f}} \mathrm{H}^{\ominus}\left(\mathrm{CO}_{2}\right)+9 \Delta_{\mathrm{f}} \mathrm{H}^{\rho}\left(\mathrm{H}_{2} \mathrm{O}\right)-\Delta_{\mathrm{f}} \mathrm{H}^{\ominus}$ (octane)
$=\{(8 \times-393.5)+(9 \times-285.8)-(-250)\} \mathrm{kJ} \mathrm{mol}^{-1}$
$=\{-3148.0-2572.2+250.0\} \mathrm{kJ} \mathrm{mol}^{-1}$
$=-5470.2 \mathrm{~kJ} \mathrm{~mol}^{-1}(3)$
$\Delta_{f} \mathrm{H}^{\circ}\left(\mathrm{CO}_{2}\right)$ and $\Delta_{f} \mathrm{H}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)$ multiplied by 8 and 9 , respectively (1)
correct signs (1)
2 marks given if all correct apart from an arithmetical slip
2 marks given for $5470.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(g) (i) methanol: $-726.0 \mathrm{~kJ} \mathrm{~mol}^{-1} / 32 \mathrm{~g} \mathrm{~mol}^{-1}=-22.69 \mathrm{~kJ} \mathrm{~g}^{-1}$
(ii) hydrogen: $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1} / 2 \mathrm{~g} \mathrm{~mol}^{-1}=-142.9 \mathrm{~kJ} \mathrm{~g}^{-1}$ accept from 2 to 5 sig. figs.
no penalties for missing units or forgetting minus sign
-1 for each wrong answer
-1 if sig. figs. outside the allowed range (only penalise once)

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
Pre-U - May/June 2010	$\mathbf{9 7 9 1}$	$\mathbf{0 2}$	

(h) (i) ethanol: $-1367.3 \mathrm{~kJ} \mathrm{~mol}^{-1} \times 0.789 \mathrm{~g} \mathrm{~cm}^{-3} / 46 \mathrm{~g} \mathrm{~mol}^{-1}$
$=-23.5 \mathrm{~kJ} \mathrm{~cm}^{-3}$
(ii) octane: $-5470.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \times 0.703 \mathrm{~g} \mathrm{~cm}^{-3} / 114 \mathrm{~g} \mathrm{~mol}^{-1}$
$=-33.7 \mathrm{~kJ} \mathrm{~cm}^{-3}$
accept only 2 or 3 sig. figs.
no penalties for missing units or forgetting minus sign
-1 for each error
-1 if sig. figs. outside the allowed range (only penalise once)
where working is correct but final answer is inexplicably wrong, allow the mark
(i) the enthalpy change of combustion value for hydrogen is for standard conditions, and so relates to gaseous hydrogen, not to liquid hydrogen
OR no account taken of different temperatures / latent heat of vaporisation of hydrogen allow comment about how the value of the density of liquid hydrogen is unsuitable for the calculation of energy per unit volume for gaseous hydrogen
allow just a reference to the different state of hydrogen
[Total: 14]

2 (a) $178 /(178+32) \times 100 \%=84.8 \%$
(b) correct plotting of point in van Arkel triangle (1)
the point has coordinates $(2.39,2.45)$ half a gradation of leeway either side, i.e. 0.05 on the scale, is acceptable
it is an insulator (1)
(c) it is ionic
(d) reaction 1: $\mathrm{HfO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{HfCl}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ (1)
reaction 2: $\mathrm{HfCl}_{4}+2 \mathrm{Mg} \rightarrow \mathrm{Hf}+2 \mathrm{MgCl}_{2}$ (1)
ecf incorrect hafnium chloride formula in step 2 from step 1
[Total: 6]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	9791	02

3 (a) CsF
(b) clear that a Cs electron is in the F outer shell (1)
charges shown on the ions (1)
allow a Cs ion with 8 electrons shown in the outer shell
no marks awarded if there is sharing of electrons
(c) largest possible difference in electronegativity between its two constituent elements owtte [1]
(d) high boiling point / low vapour pressure / does not evaporate easily
(e) wide separation of charges / large ions AND low charges both needed for mark
(f) high surface tension (1)
(relatively) high melting and/or boiling points or liquid at rtp (compared to analogous compounds) or high specific thermal capacity (1)
less dense as a solid than as a liquid (owtte) or greatest density at $4^{\circ} \mathrm{C}$ (1) [max 2]
(g) H bond drawn between hydrogen on one molecule and oxygen on another (1) oxygen lone pair drawn at the start of one of the H bonds and both ends of a dipole shown on each molecule (1)
bond angle of 180° around an H -bonding hydrogen - shown explicitly or looks like 180° intended (1)
(h) two H bonds shown between two amine groups on melamine and the carbonyl oxygens on PTCDI, and an H bond shown between the NH group on the PTCDI and the $-\mathrm{N}=$ atom on melamine that is between the two H -bonding amine groups. (2)
for both marks the H -bonds from the amine groups must be from one of the two hydrogens of each amine in particular, rather than just from $-\mathrm{NH}_{2}$ otherwise just 1 mark is given
ecf from (g) if the notation for an H -bond is incorrect
no marks if all three H bonds aren't correctly identified small errors in copying down the structures should not be penalised as long as they don't affect the H -bonding interaction
[Total: 13]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	9791	02

4 (a) allow either the repeat fragment or the notation with it in brackets brackets must be used if a skeletal formula is used to represent the repeat unit only two carbons in the backbone should be shown in the fragment or between the brackets allow any unambiguous structural formula

(b) the monomer should show a $\mathrm{C}=\mathrm{C}$ double bond between the two backbone carbons from the repeat unit, and an amide in place of the N -chloroamide the $\mathrm{C}=\mathrm{C}$ double bond must be explicit rather than implied

(c) (i) (+)1
(ii) (+)1
ecf from (c)(i), i.e. answer to (c)(ii) should be the same as (c)(i)
(iii) oxidation: $2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$(1)
reduction: $\mathrm{ClO}^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$
or $\quad \mathrm{HOCl}+\mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$ (1)
(iv) starch
(v) $12.50 \mathrm{~cm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3}=0.00125 \mathrm{~mol}$ no sig. figs. or unit penalties
(vi) $0.00125 \mathrm{~mol} / 2=0.000625 \mathrm{~mol}$ no sig. figs. or unit penalties ecf from (\mathbf{v}), i.e. answer from (\mathbf{v}) should be divided by 2
(vii) $0.000625 \mathrm{~mol} \times 35.5 \mathrm{~g} \mathrm{~mol}^{-1} \times 100 \mathrm{~cm}^{3} / 10 \mathrm{~cm}^{3}=0.222 \mathrm{~g}(2)$

1 mark for multiplying answer to (vi) by $35.5 \mathrm{~g} \mathrm{~mol}^{-1}$
1 mark for scaling up by 10, even if this isn't explicitly explained.
no sig. figs. or unit penalties
ecf from (i)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	$\mathbf{9 7 9 1}$	02

5 (a) $292-122=170$
(b) 9
(c) 18
ecf from part (b), i.e. the number of elements wide $=$ twice the number of orbitals
(d) $4 p 5 s 4 d 5 p 6 s 4 f 5 d$
(e) $6 \mathrm{~d}, 7 \mathrm{p}, 8 \mathrm{~s}$ and 5 g should be added to the diagram as below

$1 s$	$2 s$	$3 s$	$4 s$	$5 s$	$6 s$	$7 s$	$8 s$
	$2 p$	$3 p$	$4 p$	$5 p$	$6 p$	$7 p$	
		$3 d$	$4 d$	$5 d$	$6 d$		
		$4 f$	$5 f$				
			$5 g$				

(f) two gelectrons
[Total: 6]

6 (a) 5 signals
(b) 3 isomers
(c) any oxidising agent, e.g. manganate, dichromate, chlorate
ignore omission of acidification where necessary
oxidising agents that lack an oxygen atom need to be indicated as (aq)
if a formula is given it must be correct to earn the mark
if an oxidation number is quoted it must be correct to earn the mark
(d) Grignard (reagent)
(e) 1: (nucleophilic) substitution allow hydrolysis (1)

5: hydrolysis (1)
6: dehydration / elimination allow reduction as FGL of functional group carbon has decreased by 1 (1)

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	9791	02

(f) A: benzyl alcohol (phenylmethanol) (1)

B: benzaldehyde (1)

C: benzylmagnesium bromide (1)

D: $\mathrm{PhCH}(\mathrm{OMgBr}) \mathrm{CH}_{2} \mathrm{Ph}(1)$

E: $\quad \mathrm{PhCH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{Ph}(1)$

allow all structural and displayed formulae as long as structure is unambiguous penalise repeated systematic or trivial errors only once

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	9791	02

7 (a) $\delta+$ on the I and δ - on the N OR correct use of arrow nomenclature
(b) (i) $\mathrm{NH}_{3}+3 \mathrm{~F}_{2} \rightarrow \mathrm{NF}_{3}+3 \mathrm{HF}$
(ii) $2 \mathrm{NF}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{~F}_{2}$ or with stoichiometry 1:1/2:3/2
(iii) correct dot-cross diagram, including lone pairs on the fluorines (1)
shape $=$ pyramidal (or trigonal pyramidal) (1)
bond angle indicated as anything from 102 to 107° (1)
(actual bond angle is 102.3 degrees: there is weak bonding pair-bonding pair repulsion due to the electron density in the N-F bonds being shifted towards the electronegative fluorine atoms)
(iv) stronger $\mathrm{N}-\mathrm{F}$ bonds / higher activation energy
allow: since the $\mathrm{F}-\mathrm{F}$ bond is weaker than the $\mathrm{Cl}-\mathrm{Cl}$ bond the thermal decomposition of
NF_{3} will be less exothermic than for NCl_{3}
(c) (i) $\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}$
(ii) $12 \mathrm{HNO}_{3}+\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow 6 \mathrm{~N}_{2} \mathrm{O}_{5}+4 \mathrm{H}_{3} \mathrm{PO}_{4}$ (2)
accept $6 \mathrm{HNO}_{3}+\mathrm{P}_{2} \mathrm{O}_{5} \rightarrow 3 \mathrm{~N}_{2} \mathrm{O}_{5}+2 \mathrm{H}_{3} \mathrm{PO}_{4}$
1 mark for correct formulae but incorrect balancing
(iii) $\mathrm{NO}_{2}{ }^{+} \mathrm{NO}_{3}{ }^{-}$or $\mathrm{NO}_{2} \mathrm{NO}_{3}$
[Total: 11]

8 (a) cis (or Z)
(b) ictadeca-6,9,12,15-tetraenoic acid accept tetrenoic instead of tetraenoic accept without the hyphens or with hyphens instead of commas.
(c) $2^{5}=32$ geometric isomers
(d) instantaneous dipole - induced dipole forces
(e) the 3 rd from last carbon atom from the COOH functional group is the final one in a $\mathrm{C}=\mathrm{C}$ double bond (owtte)
(f) $\mathrm{BrCH}_{2} \mathrm{CHBrCH}_{3}$ (1)
accept any unambiguous structure that is correct.
1,2-dibromopropane (1)
don't penalise errors with commas, spaces or hyphens

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2010	9791	02

(g) (i) amount of $\mathrm{C}=\mathrm{C}$ bonds in $100 \mathrm{~g}=6 \times 100 \mathrm{~g} / 328 \mathrm{~g} \mathrm{~mol}^{-1}=1.83 \mathrm{~mol}$ (1)
mass of iodine required $=1.83 \mathrm{~mol} \times 254 \mathrm{~g} \mathrm{~mol}^{-1}=465 \mathrm{~g}$ (1)
ecf for second mark if correct calculation with wrong number of $\mathrm{C}=\mathrm{C}$ bonds.
1 mark lost for not quoting final answer to 3 or 4 sig. figs.
no penalties for missing units
(ii) oleic acid $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2}$
(h) (i) the $\mathrm{I}-\mathrm{Cl}$ bond has a (permanent) dipole
(ii) use of cervonic acid in calculation (as it reacts with the most ICl) (1) vol of 25% excess ICl
$=1.25 \times\left(6 \times 0.100 \mathrm{~g} / 328 \mathrm{~g} \mathrm{~mol}^{-1}\right) / 0.100 \mathrm{~mol} \mathrm{dm}^{-3}=22.9 \mathrm{~cm}^{3}$ (1)
give this mark if a correct calculation has been performed with another fatty acid.
excess $I C l$ to be used $=25.0 \mathrm{~cm}^{3}$ (1)
ecf for rounding up the volume of $\mathrm{IC} l$ to a pipette size $\left(10 \mathrm{~cm}^{3}, 20 \mathrm{~cm}^{3}\right.$ or $\left.50 \mathrm{~cm}^{3}\right)$ transferred using a pipette (1)
(iii) transfer sample directly to stoppered flask (1)
$250 \mathrm{~cm}^{3}$ flask (1)
transfer using 1,1,1-trichloroethane washings (1)
leave for 30 minutes after adding Wijs' reagent (1)
measuring cylinder used for adding KI (1)
measuring cylinder used for adding water (1)
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ dispensed from a burette or use of the word "titrate" or "titration" (1)
starch indicator (1)
blue-black to colourless (1)
white tile (1)
shaking of (stoppered) flask after $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ additions ("swirling" not enough) (1) working with 1,1,1-trichloroethane in a fume cupboard (1)
(iv) vol $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq}) \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3}=$ amount $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$ (1)
amount $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})=2 \times$ amount ICl (excess) (1)
amount ICl (reacted) $=$ amount ICl (initial) - amount ICl (excess) (1)
compare this amount ICl (reacted) with $\mathrm{n}(\mathrm{C}=\mathrm{C}$ bonds) $\times 0.100 \mathrm{~g} /$ molar mass for each
fatty acid (in order to identify the fatty acid, which will be the one that most closely
resembles the experimental value.) (1)
loss of 1 mark for confusing I_{2} with ICl.
[Total: 27]

