UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9791 CHEMISTRY

9791/02

Paper 2 (Part A Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	ge z	wark Scheme: Teachers Version	Syllabus	Paper
		Pre-U – May/June 2010	9791	02
1 (a)	octane: 1 mark if	46 g mol ⁻¹ l 14 g mol ⁻¹ both numbers correct ty for incorrect sig. figs.		[1]
(b)	-	n g cm ⁻³ = 2 g mol ⁻¹ / 24000 cm ³ mol ⁻¹ = 8.3×10^{-5} g cm ty for incorrect sig. figs.	1 ⁻³	[1]
(c)		definition) is mark if the zero is just entered in the table		[1]
(d)	–285.8 k the mark question	J mol ⁻¹ is given for indicating that it is the same as the enth	nalpy of formatio	on given in the [1]
(e)	equation	+ $25/2O_2(g) \rightarrow 8CO_2(g)$ + $9H_2O(l)$ (1) must be per mole of octane and correctly balanced fo tate symbols for octane, oxygen, carbon dioxide and w		[2]
(f)	= $\{(8 \times -$ = $\{-3148\}$ = -5470 . $\Delta_f H^e(CO)$ correct s 2 marks	cane) = $8\Delta_f H^e$ (CO ₂) + $9\Delta_f H^e$ (H ₂ O) – $\Delta_f H^e$ (octane) 393.5) + (9 × –285.8) – (–250)} kJ mol ⁻¹ 5.0 – 2572.2 + 250.0} kJ mol ⁻¹ 2 kJ mol ⁻¹ (3) 2) and $\Delta_f H^e$ (H ₂ O) multiplied by 8 and 9, respectively (1) igns (1) given if all correct apart from an arithmetical slip given for 5470.2 kJ mol ⁻¹		[max 3]
(g)	(ii) hydr	nanol: $-726.0 \text{ kJ mol}^{-1} / 32 \text{ g mol}^{-1} = -22.69 \text{ kJ g}^{-1}$ ogen: $-285.8 \text{ kJ mol}^{-1} / 2 \text{ g mol}^{-1} = -142.9 \text{ kJ g}^{-1}$		[1]
	no p –1 fo	ept from 2 to 5 sig. figs. enalties for missing units or forgetting minus sign or each wrong answer sig. figs. outside the allowed range (only penalise onc	e)	[1]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 2

Pa	age 3	3	Mark	Scheme: Tead	chers' vers	ion	Syll	abus	Paper
				Pre-U – May/J				791	02
(h)	(i)	ethan = -23	nol: –1367.3 kJ 3.5 kJ cm ⁻³	mol ⁻¹ × 0.789	$g cm^{-3} / 46$	g mol ⁻¹			[1
	(ii)	= -33 accept no per -1 for -1 if s	B.7 kJ cm ⁻³ ot only 2 or 3 senalties for miser each errorsig.	mol ⁻¹ × 0.703 ig. figs. sing units or fo le the allowed orrect but final a	orgetting min	nus sign penalise c	,	ow the n	nark [1
(i)	rela OR allo cal	ates to no ac w con culation	gaseous hydro count taken of nment about h n of energy pe	combustion vogen, not to liq different temp low the value r unit volume for the different s	uid hydroge eratures / la of the dens or gaseous l	n tent heat o ity of liqui hydrogen	of vaporisa	ation of h	ydrogen
									[Total: 14
(a)	178	3/(178	+ 32) × 100% :	= 84.8%					[1
(b)				n van Arkel tria es (2.39, 2.45)		ation of le	eway eith	er side, i	.e. 0.05 on the

(d) reaction 1:
$$HfO_2 + 4HCl \rightarrow HfCl_4 + 2H_2O$$
 (1) reaction 2: $HfCl_4 + 2Mg \rightarrow Hf + 2MgCl_2$ (1) ecf incorrect hafnium chloride formula in step 2 from step 1 [2]

[Total: 6]

Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper
		Pre-U – May/June 2010	9791	02
(a)	CsF			[1]
(b)	charges allow a C	t a Cs electron is in the F outer shell (1) shown on the ions (1) Cs ion with 8 electrons shown in the outer shell awarded if there is sharing of electrons		[2]
(c)	largest p	ossible difference in electronegativity between its two	constituent elem	ents owtte [1]
(d)	high boili	ing point / low vapour pressure / does not evaporate ea	asily	[1]
(e)	wide sep	paration of charges / large ions AND low charges both	needed for mark	[1]
(f)	(relativel	face tension (1) y) high melting and/or boiling points or liquid at ands) or high specific thermal capacity (1) se as a solid than as a liquid (owtte) or greatest density		to analogous [max 2]
(g)	oxygen I on each	drawn between hydrogen on one molecule and oxygen one pair drawn at the start of one of the H bonds and molecule (1) gle of 180° around an H-bonding hydrogen – show (1)	d both ends of a	•
(h)	PTCDI, a melamin for both i each am ecf from no marks small err	onds shown between two amine groups on melamine and an H bond shown between the NH group on the e that is between the two H-bonding amine groups. (2) marks the H-bonds from the amine groups must be fro ine in particular, rather than just from –NH ₂ otherwise jet (g) if the notation for an H-bond is incorrect if all three H bonds aren't correctly identified from in copying down the structures should not be perfectly interaction.	PTCDI and the m one of the two ust 1 mark is give	-N= atom on on hydrogens of ten as they don't [2]
				[Total: 13]

3

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2010	9791	02

4 (a) allow either the repeat fragment or the notation with it in brackets brackets must be used if a skeletal formula is used to represent the repeat unit only two carbons in the backbone should be shown in the fragment or between the brackets allow any unambiguous structural formula

(b) the monomer should show a C=C double bond between the two backbone carbons from the repeat unit, and an amide in place of the N-chloroamide the C=C double bond must be explicit rather than implied

- (c) (i) (+)1 [1]
 - (ii) (+)1 ecf from (c)(i), i.e. answer to (c)(ii) should be the same as (c)(i) [1]
 - (iii) oxidation: $2I^- \to I_2 + 2e^- (1)$ reduction: $C/O^- + 2H^+ + 2e^- \to C/^- + H_2O$ or $HOC/ + H^+ + 2e^- \to C/^- + H_2O (1)$ [2]
 - (iv) starch [1]
 - (v) $12.50 \text{ cm}^3 \times 0.100 \text{ mol dm}^{-3} = 0.00125 \text{ mol}$ no sig. figs. or unit penalties [1]
 - (vi) 0.00125 mol / 2 = 0.000625 mol no sig. figs. or unit penalties ecf from (v), i.e. answer from (v) should be divided by 2
 - (vii) 0.000625 mol × 35.5 g mol⁻¹ × 100 cm³ / 10 cm³ = 0.222 g (2) 1 mark for multiplying answer to (vi) by 35.5 g mol⁻¹ 1 mark for scaling up by 10, even if this isn't explicitly explained. no sig. figs. or unit penalties ecf from (i) [2]

[Total: 11]

	Pa	ge 6							rs' versi	on	Syllabus	Paper
				-		Pre-U	– May	/June	2010		9791	02
5	(a)	292	– 122	= 170								[1]
	(b)	9										[1]
	(c)		rom pa	art (b) ,	i.e. the	e numl	oer of	eleme	ents wide	= twice the	number of orbit	tals [1]
	(d)	4p 5	s 4d 5	p 6s 4f	5d							[1]
	(e)	6d, 7	7p, 8s	and 5g	shoul	d be a	dded	to the	diagram a	as below		[1]
		1s	2s	3s	4s	5s	6s	7s	8s			
			2p	3p	4p	5p	6p	7р				
				3d	4d 4f	5d 5f	6d					
					41	5 g						
						J						
	(f)	two	g elect	rons								[1]
												[Total: 6]
6	(a)	5 sig	ınals									[1]
	(b)	3 isc	mers									[1]
	(c)	•		-	_		_		romate, c essary	hlorate		
										be indicate	d as (aq)	
									arn the m	nark to earn the	mark	[1]
		II all	UXIUAI	lion nui	IIDCI I	s quot	ea it ii	iust b	e conect	o cam me	mark	ניז
	(d)	Gria	nard (r	eagent	+)							[1]
	(ω)	Origi	(1	Jagoni	• /							ניו
	(e)	1:	(nucle	ophilic)	subst	itution	allow	hvdro	lysis (1)			
	ν-,	5:	hydrol	ysis (1))			-		- 501 6	formation of	
				ration ased by			n allo	w rec	iuction a	s FGL Of	Tunctional gro	up carbon has [3]
				,	. /							

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2010	9791	02

(f) A: benzyl alcohol (phenylmethanol) (1)

B: benzaldehyde (1)

C: benzylmagnesium bromide (1)

D: PhCH(OMgBr)CH₂Ph (1)

E: PhCH(OH)CH₂Ph (1)

allow all structural and displayed formulae as long as structure is unambiguous penalise repeated systematic or trivial errors only once

[5]

[Total: 12]

	Page 8	3	Mark Scheme: Teachers' version	Syllabus	Paper
			Pre-U – May/June 2010	9791	02
7	` '		e I and δ – on the N ect use of arrow nomenclature		[1]
	(b) (i)	NH ₃	$+3F_2 \rightarrow NF_3 + 3HF$		[1]
	(ii)	2NF	$_3 \rightarrow N_2 + 3F_2$ or with stoichiometry 1:1/2:3/2		[1]
	(iii)	shap bond (actu due	ect dot-cross diagram, including lone pairs on the fluoring e = pyramidal (or trigonal pyramidal) (1) diangle indicated as anything from 102 to 107° (1) ual bond angle is 102.3 degrees: there is weak bondito to the electron density in the N–F bonds being shifterine atoms)	ng pair-bonding	•
	(iv)	allov	nger N–F bonds / higher activation energy w: since the F–F bond is weaker than the Cl – Cl bond will be less exothermic than for NCl_3	the thermal dec	composition of
	(c) (i)	N ₂ O	$_5$ + $H_2O \rightarrow 2HNO_3$		[1]
	(ii)	acce	$NO_3 + P_4O_{10} \rightarrow 6N_2O_5 + 4H_3PO_4$ (2) ept $6HNO_3 + P_2O_5 \rightarrow 3N_2O_5 + 2H_3PO_4$ ark for correct formulae but incorrect balancing		[2]
	(iii)	NO ₂	† NO $_3^-$ or NO $_2$ NO $_3$		[1]
	()	-	v z v		[Total: 11]
8	(a) cis	(or Z)			[1]
	aco	cept te	-6,9,12,15-tetraenoic acid etrenoic instead of tetraenoic vithout the hyphens or with hyphens instead of commas	3 .	[1]
	(c) 2 ⁵	= 32 g	geometric isomers		[1]
	(d) ins	tantar	neous dipole – induced dipole forces		[1]
			rom last carbon atom from the COOH functional group double bond (owtte)	is the final one	[1]
	aco 1,2	cept a 2-dibro	HBrCH ₃ (1) ny unambiguous structure that is correct. nmopropane (1) nalise errors with commas, spaces or hyphens		[2]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2010	9791	02

(g) (i) amount of C=C bonds in 100 g = 6×100 g / 328 g mol⁻¹ = 1.83 mol (1) mass of iodine required = $1.83 \text{ mol} \times 254 \text{ g mol}^{-1} = 465 \text{ g}$ (1) ecf for second mark if correct calculation with wrong number of C=C bonds. 1 mark lost for not quoting final answer to 3 or 4 sig. figs. no penalties for missing units [2] (ii) oleic acid C₁₈H₃₄O₂ [1] (h) (i) the I–Cl bond has a (permanent) dipole [1] (ii) use of cervonic acid in calculation (as it reacts with the most IC1) (1) vol of 25% excess IC1 = $1.25 \times (6 \times 0.100 \text{ g} / 328 \text{ g mol}^{-1}) / 0.100 \text{ mol dm}^{-3} = 22.9 \text{ cm}^{3} (1)$ give this mark if a correct calculation has been performed with another fatty acid. excess ICl to be used = 25.0 cm 3 (1) ecf for rounding up the volume of IC1 to a pipette size (10 cm³, 20 cm³ or 50 cm³) transferred using a pipette (1) [4] (iii) transfer sample directly to stoppered flask (1) 250 cm³ flask (1) transfer using 1,1,1-trichloroethane washings (1) leave for 30 minutes after adding Wijs' reagent (1) measuring cylinder used for adding KI (1) measuring cylinder used for adding water (1) Na₂S₂O₃ dispensed from a burette or use of the word "titrate" or "titration" (1) starch indicator (1) blue-black to colourless (1) white tile (1) shaking of (stoppered) flask after Na₂S₂O₃ additions ("swirling" not enough) (1) working with 1,1,1-trichloroethane in a fume cupboard (1) [max 8]

(iv) vol Na₂S₂O₃(aq) × 0.100 mol dm⁻³ = amount Na₂S₂O₃(aq) (1) amount Na₂S₂O₃(aq) = 2 × amount ICl (excess) (1) amount ICl (reacted) = amount ICl (initial) – amount ICl (excess) (1) compare this amount ICl (reacted) with n(C=C bonds) × 0.100 g / molar mass for each fatty acid (in order to identify the fatty acid, which will be the one that most closely resembles the experimental value.) (1) loss of 1 mark for confusing I₂ with ICl. [4]

[Total: 27]