UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE General Certificate of Education Ordinary Level

SCIENCE

5124/03, 5126/03

Paper 3 Chemistry

October/November 2006

1 hour 15 minutes

Additional Materials: Answer Booklet/Paper

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the booklet. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any **two** questions.

Write your answers on the lined pages provided and, if necessary, continue on separate answer paper.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

FOR EXAM	NER'S USE
Section A	
Section B	
TOTAL	

This document consists of 12 printed pages and 4 lined pages.

SJF3685/CG T02196/2 © UCLES 2006

Section A

Write your answers in the spaces provided on the question paper.

Answer all the questions.

1	(a)	Name three of the components of clean, dry air.				
		(i)				
		(ii)				
	((iii)		[3]		
	(b)	The	air can be polluted by various chemicals.			
		(i)	Give the chemical name for one of these pollutants.			
		(ii)	Describe how this pollutant enters the air.			
				 [3]		
				10		

2 A sample of water contains salt as an impurity. The apparatus shown in Fig. 2.1 is used to produce pure water from the sample.

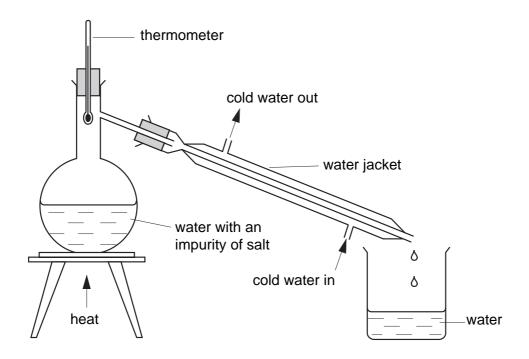


Fig. 2.1

(a)	(i)	Name the method of purification.	
	(ii)	Suggest the purpose of the water jacket.	
			[2]
(b)	Wha	at would be the approximate reading on the thermometer during the purification?	
			[1]
(c)	Dra	w a cross (X) on Fig. 2.1 where the salt would be left after purification is comple	te

[1]

3 (a) Table 3.1 describes **two** plastics. Complete the table. Part of the table has been completed for you as an example.

Table 3.1

name	repeating unit	use	type of polymerisation used in manufacture
poly(ethene)		making clingfilm	
	O O O O O O O O O O O O O O O O O O O		condensation polymerisation

[4]

- (b) The careless disposal of both plastics and iron or steel causes pollution problems. An article made from one of the plastics in Table 3.1 is likely to cause pollution for a longer period of time than a similar article made from iron or steel. Explain why.
- 4 A spillage of 19.6 tonnes of sulphuric acid results from an accident to a road tanker. Slaked lime is used to neutralise the acid.
 - (a) The unbalanced chemical equation for the neutralisation is as follows.

$$H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 + H_2O$$

Balance this equation.

[1]

(b) Calculate the relative molecular mass of slaked lime, Ca(OH)₂.

[Relative atomic masses: A_r: H, 1; O, 16; Ca, 40.]

[1]

		5
(c)	Use	the balanced chemical equation to determine
	(i)	the mass of slaked lime needed to neutralise the 19.6 tonnes of spilt acid, [Relative atomic masses: A_r : H, 1; O, 16; S, 32; Ca, 40.]
	(ii)	$\mbox{mass} = \mbox{tonnes}$ the mass of calcium sulphate formed during the neutralisation of the spilt acid. [Relative atomic masses: A_r : H, 1; O, 16; S, 32; Ca, 40.]
(d)	Wha	mass =tonnes [3] at test could be used to show that the acid has all been neutralised?
		[1]

(e) The calcium sulphate formed in this neutralisation is insoluble in water. Suggest why

this is important.

5 Fig. 5.1 shows part of the Periodic Table of the elements. Use information from Fig. 5.1 to answer the questions that follow. The elements are represented by their chemical symbols.

								Gro	oup								
- 1	II											III	IV	V	VI	VII	0
							Н										Не
Li	Ве											В	С	N	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr

Fig. 5.1

		119. 5.1	
(a)	Giv	e the symbol for	
	(i)	a halogen,	
	(ii)	an alkali metal	[2]
(b)	and	rgen, sulphur and selenium are in Group VI. At room temperature oxygen is a gas of sulphur is a solid. Predict whether selenium is, at room temperature, a gas of id or a solid.	_
			[1]
(c)		trend in reactivity in Group VI is similar to that in Group VII. Suggest which is treactive element in Group VI.	the
			[1]
(d)	Writ	te the formula for a compound that is formed when	
	(i)	an element from Group I reacts with an element from Group VI,	
	(ii)	an element from Group II reacts with an element from Group VI.	
			[2]

6 Fig. 6.1 shows details of four alcohols.

alcohol	molecular formula	molecular mass	boiling point / °C
methanol	CH ₃ OH	32	65
ethanol	C ₂ H ₅ OH	46	79
propan-1-ol	C ₃ H ₇ OH	60	97
butan-1-ol	C₄H ₉ OH	74	117

Fig. 6.1

- (a) The four alcohols in Fig. 6.1 are members of the same homologous series. The next in this series of alcohols is pentan-1-ol.
 - (i) Predict the approximate boiling point of pentan-1-ol.

.....

(ii) Determine the relative molecular mass of pentan-1-ol.

[Relative atomic masses: A_r: H, 1; C, 12; O, 16.]

.....

[2]

(b) The structural formula for methane is drawn as

Draw the structural formula for ethanol, $\mathrm{C_2H_5OH.}$

[2]

(c)	Eth	Ethanol, C ₂ H ₅ OH, is burnt as a fuel.				
	(i)	Name two of the products of burning ethanol in excess oxygen.				
	(ii)	Write a chemical equation for this burning of ethanol. State symbols are not required.				
		[4]				

7 Four metals are represented by the letters **A**, **B**, **C** and **D**: these are **not** chemical symbols. Their reactions with cold water and dilute hydrochloric acid are summarised in Fig. 7.1.

metal	reaction with cold water	reaction with dilute hydrochloric acid
Α	none	none
В	none	slow
С	fast	fast
D	slow	fast

Fig. 7.1

(a)	Pla	ce the metals	A, B, C and D in order of reactivity.	
	mos	st reactive		
	leas	st reactive		[1]
(b)	Wh	ich of the met	als A, B, C or D could be	
	(i)	sodium,		
	(ii)	copper?		[2]
(c)			f the metals A , B , C and D would probably be the easiest to extra occurring ore.	act
				[1]

8 Hydrogen peroxide solution decomposes in the presence of a catalyst, producing oxygen gas.

The rate of this reaction can be found by plotting total volume of oxygen evolved against time.

This graph is shown in Fig. 8.1.

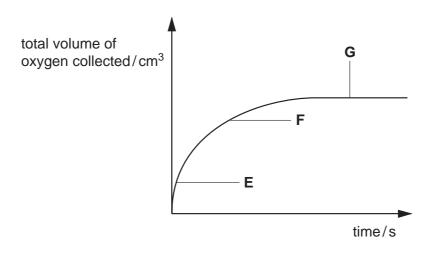


Fig. 8.1

(a) Describe the rate of decomposition at points E, F and G.

(iii)	G
(ii)	F,
(i)	E,

(b) How does the rate of decomposition depend upon the number of molecules of hydrogen peroxide present in the solution?

[11]

Section B

Answer any two questions.

Write your answers on the lined pages provided and, if necessary, continue on separate answer paper.

9 Substance **H** is a mixture of three sodium salts. Fig. 9.1 shows a description written by students of how they attempted to identify the three salts.

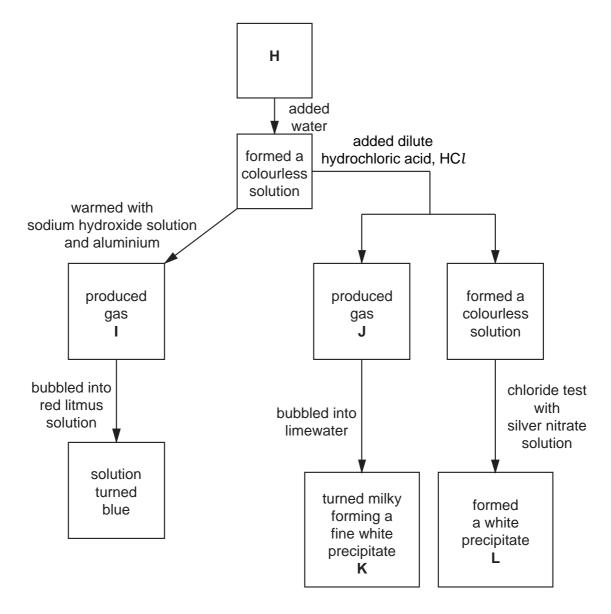


Fig. 9.1

- (a) (i) Name the gases I and J and the white precipitates K and L. [4]
 - (ii) The formation of white precipitate L shows the presence of chloride ions.Why does this not prove that chloride ions are present in substance H? [2]
- **(b)** What two sodium salts must be present in the substance **H**? [2]
- (c) Write a chemical equation to represent any **one** of the reactions shown in Fig. 9.1. State symbols are **not** required. [2]

- **10** (a) Name a mixture that is gaseous, a compound that is a liquid and an element that is a solid, at room temperature and pressure. [3]
 - (b) For each of the substances you have identified in (a),
 - (i) name the atoms within the substance which are bonded together as molecules, if any,
 - (ii) describe how the particles move within that substance. [7]
- 11 (a) Iron is manufactured in a blast furnace using an iron ore, coke and limestone.

Name the ore and give the formula for the main iron compound in this ore.

[2]

- (b) Describe the essential chemical reactions that take place in the blast furnace. Include chemical equations in your description. [5]
- (c) The properties of a metal can be changed by alloying the metal with other elements.

Name an alloy, state its components and give one of its uses.

[3]

4	_
1	~
	J

For
Examiner's
Use

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

		0	4 H elium	20 Neon	40 Ar Argon	84 Kr Krypton	131 Xe Xenon	Rn Radon	
			. ∓ [⊕]	0. Z ¾	18	36	11. Xe Xe 54	R. 88	
				19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85	
		IN		16 Oxygen	32 S Sulphur	Selenium	128 Te Tellurium 52	Po Polonium 84	
		>		14 N Nitrogen 7	31 Phosphorus	75 AS Arsenic 33	Sb Antimony 51	209 Bi Bismuth 83	
		2		12 Carbon	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead 82	
		=		11 Boron 5	27 A1 Aluminium	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium 81	
ıts						65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80	
Elemen						64 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
le of the	Group					S9 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
dic Tab	Gr					59 Cobalt	103 Rh Rhodium 45	192 Ir Indium 77	
he Periodic Table of the Elements			T Hydrogen			56 Fe Iron 26	101 Ru Ruthenium 44	190 Os Osmium 76	
–						55 Wn Manganese 25	Tc Technetium 43	186 Re Rhenium 75	
						52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
						51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum 73	
						48 T Titanium 22	91 Zronium 40	178 Hf Hafnium 72	
						Scandium	89 Y	139 La Lanthanum 57 *	227 Actinium 89
		=		Beryllium	24 Mg Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium Radium 88
		_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87

140 141 144 Pm 150 152 159 162 165 165 169 173 Certum Praseodymium Neodymium Promethium Samarium Europium Gadolinium Gadolinium Terbium Honium Honium Fribium Tholium Yiterbium Yiterbium 232 238 238 4 Americium Americium Californium Berkelium Californium Berkelium Americium
Ce Pr Nd Pm Samarium Europium Gadolium Tethium Dysprosium Ho Erbium Framerium Framerium Framerium Gadolium Tetrium Dysprosium Ho Erbium Tetrium 232 238 64 65 65 65 67 67 67 7m 7m Thorium Protactinium Np Putonium Americum Crum Berkelium Californium Einsteinium Mendelevium 101 101 100 101 100 101 100
Ce Pr Ndd Pm Sm 150 152 157 159 162 165
Ce Pr Nd Pm Sm Eu Gd Tb Tb Dysprosium Cerium Praseodymium Neodymium Promethium Samarium Europium Gd Tb Dysprosium 232 238 238 238 Cf Curium Bertelium Curium Bertelium Carlium Thorium Prostectirium Uranium Neptunium Putonium Americium Carlium Bertelium Callonium
Ce Prasedymium Promethium Sm samarium Europium Gadolinium Tebitum 232 238 238 Neptunium Neptunium Putonium Putonium Americum Gardolinium Tebitum Thorium Prosactirium Neptunium Putonium Putonium Americum Curium Berkelium 91 Neptunium 92 94 95 Curium Berkelium
Ce Praseodymium Promethium Sm Furphium F
Ce Pr Ndd Pm Sm 152 152 Cerium Praseodymium Neodymium Promethium Samarium Europium 63 232 238 238 C 61 Am Am Am Thorium Protactinium Utanium Neptunium Putonium Americium Am 91 92 94 95 95 96 96
Ce Pr Neodymium Fromertium Promertium Fromertium Sm arium Fromertium Promertium Fromertium Putonium Fromertium Putonium Fromertium Putonium Fromertium Putonium Fromertium Putonium Fromertium Putonium
Ce Pr Nd Promerhum 60 61 232 238
Cetium Prosectivium 60 232 C 238 C C Confium 91 92 Uranium 91 92 Uranium 92 Uranium 92 Uranium 92 Uranium 93 Uranium 93 Uranium 94 Uranium 95 U
Ce Pr Nd Certum S9 Certum S9 Ce Pr Secodymium G0 Certum S9 Co Certum S9 Co Certum S9 Co Certum S9 Co Certum S9 Certum S9 Certum S91
140 Cerium 5 232 Th Thorium 9

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

т В

Key

b = proton (atomic) number

a = relative atomic massX = atomic symbol

*58-71 Lanthanoid series 90-103 Actinoid series