Candidate Number Name # CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level **SCIENCE** 5124/03, 5126/03 Paper 3 Chemistry October/November 2003 1 hour 15 minutes Additional Materials: Answer paper ### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. #### Section A Answer all questions. Write your answers in the spaces provided on the question paper. ### **Section B** Answer any **two** questions. Write your answers on the lined page provided and, if necessary, continue on separate answer paper. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 12. If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page. Stick your personal label here, if provided. | FOR EXAMINER'S USE | | | | | |--------------------|--|--|--|--| | Section A | | | | | | Section B | | | | | | | | | | | | | | | | | | TOTAL | | | | | This document consists of 11 printed pages.and 1 lined page. ## **Section A** ## Answer all the questions. Write your answers in the spaces provided on the question paper. 1 Give **one** use for each of the substances in Fig. 1.1. | substance | use | |-------------------|-----| | calcium carbonate | | | chlorine | | | hydrogen | | | silver salts | | | zinc | | **Fig. 1.1** [5] 2 Chemical reactions sometimes have names. For example, the complete reaction of an acid with an alkali is called 'neutralisation'. Fig. 2.1 contains a series of chemical reactions. Give the names of these reactions. Fig. 2.1 - (a) reaction A - (b) reaction B - (c) reaction C [3] | 3 | (a) | Give | Give the number of the Group of the Periodic Table that contains | | | | | | | | | |---|----------|--------------------------------------|--|--|--|--|--|--|--|--|--| | | | (i) |) alkali metals, | | | | | | | | | | | | (ii) | i) halogens | | | | | | | | | | | (b) | | up 0 of the Periodic Table active. | contains noble gases. The noble gases are all chemically | | | | | | | | | | | (i) | (i) Complete the table in Fig. 3.1. | | | | | | | | | | | | name of noble gas one use of the gas | Fig. 3.1 | | | | | | | | | | | | | | (ii) | Explain why noble gases | are chemically unreactive. | [4] | | | | | | | | 4 Phosphorus is an element that does not react with water. Phosphorus will react with one of the gases in air, forming an oxide. A piece of phosphorus is fastened to a copper wire and left for a few days in the apparatus shown in Fig. 4.1. The water slowly rises up the tube. Fig. 4.1 | (a) | Name the gas, contained in air, that reacts with phosphorus. | | |-----|---|-----| | | | [1] | | (b) | Approximately how far up the tube will the water rise? | | | | | [1] | | (c) | Name two gases that are left in the tube after a few days. | | | | | | | | | [2] | Imagine that three metals are transported to Earth by rocket ship from a far distant planet. On the planet the three metals are called beium, ceium and deium. On Earth the three metals are dropped into water: deium does not react, but beium and ceium do, liberating a gas T which 'pops' when lit. When beium is mixed with dilute sulphuric acid, a solution of beium sulphate is formed. When ceium is dropped into a solution of beium sulphate, beium is not displaced. | (a) | (i) | Name the gas T and the compound formed when it is lit. | | | | | | |-----|------|---|----|--|--|--|--| | | | name of gas | | | | | | | | | compound formed | | | | | | | | (ii) | Place beium, ceium and deium in order of reactivity, most reactive first. | | | | | | | | | [3 | | | | | | | | | į s | וי | | | | | | (b) | Dei | um could be the same metal as one of Earth's metals. | | | | | | | | (i) | Name one of Earth's metals that might be the same as deium. | | | | | | | | | | | | | | | | | (ii) | In the future people on Earth might need to import this metal from the far distarplanet. Suggest why this might be necessary. | nt | | | | | | | | | | | | | | [2] 6 Three samples of calcium carbonate are placed in flasks for an investigation. In flask **E** is 5 g of calcium carbonate – large lumps. In flask **F** is 5 g of calcium carbonate – medium-sized lumps. In flask **G** is 5 g of calcium carbonate – small lumps. The same volume, an excess, of dilute hydrochloric acid is added to each flask. The flasks are placed on three electronic balances. A datalogger is used to plot the loss of mass of the flasks and their contents against time. The results are shown in Fig. 6.1. Fig. 6.1 | (a) | (a) (i) | Why do the three flasks and their contents lose mass? | | |-----|---------|---|-----| | | | | | | | (ii) | How do the rates of reaction change with time? | | | | | | | | | | | [2] | | (b) | In w | which flask is the reaction fastest at time t = 20 s? | | |-----|------|--|-----------| | | | | [1] | | (c) | (i) | After how long does the reaction in flask G stop? | | | | | | | | | (ii) | Why does this reaction stop? | | | | | |
[2] | | | | | [4] | | (d) | | etch on Fig. 6.1 the curve you would expect if 5 g of powdered calcium carbonated dinstead of 5 g of lumps of calcium carbonate. Label this curve H . | is
[2] | | (e) | Wh | at name is given to a reaction in which heat is given out? | | | | | | [1] | 7 Some properties of three solids, I, J and K are given in Fig. 7.1. Use this information to complete the last column of the table. | solid | percentage
composition
by mass | solid
conducts
electricity | strong heat
in oxygen | element or mixture
or compound | |-------|--------------------------------------|----------------------------------|---------------------------|-----------------------------------| | ı | constant no | | decomposes | | | J | varies no | | burns | | | K | constant | yes | oxidises to one substance | | **Fig. 7.1** [3] **8** Fig. 8.1 shows some of the properties of a blue, crystalline solid. Fig. 8.1 Identify the following. - (a) substance M - (b) substance N - (c) substance O - (d) substance P [4] 9 Fig. 9.1 shows the particles in three substances, Q, R and S. Fig. 9.1 (a) Which of the structures in Fig. 9.1 best represents | (i) | solid copper. | | |-----|---------------|--| | | | | (ii) brass, | (iii) a non-me | al? | |----------------|-----| |----------------|-----| [3] **(b)** Use the structures in Fig. 9.1 to help you to suggest why a wire made of an alloy is more difficult to stretch than a wire made of a pure metal. |
 | |---------| | [4] | |
[1] | (c) (i) Why do metals conduct heat better than non-metals? | • • • • |
 |
 | • |
• | | |---------|------|------|---|---|--| (ii) Give two other differences between metals and non-metals. #### Section B ## Answer any two questions. Write your answers on the lined page provided and, if necessary, continue on separate answer paper. - **10 (a) (i)** Describe how crystalline sugars can be used to produce a solution of ethanol in water. Explain why the temperature must not be allowed to rise above 50 °C. - (ii) Explain why an acid will form in the resulting ethanol solution if it is left open to the air for some time. [5] [5] - **(b)** Write the full structural formula for ethanol. Calculate its percentage of carbon by mass. [Relative atomic masses A_r : H,1; C,12; O,16] - 11 Sodium hydroxide solution is an alkali and dilute sulphuric acid is an acid. - (a) (i) Give two properties of all alkalis and three properties of all acids. - (ii) What ions cause these properties? [7] - (b) Sulphuric acid can be neutralised by sodium hydroxide. Write a chemical equation and an ionic equation to represent this neutralisation. [3] - 12 (a) Define - (i) proton number, - (ii) mass number. [2] - (b) An element contains atoms of an isotope that has mass number 36 and proton number 16. - (i) Draw diagrams to show the nuclear and electronic structures of an atom of this isotope. - (ii) Identify the element by using the Periodic Table on page 12. Give the element's symbol and the number of the Group in which it appears. - (iii) Decide whether the element is a metal or a non-metal, and explain how you made this decision. [8] DATA SHEET The Periodic Table of the Elements | | | 0 | 4 H | Helium
2 | 20 | Ne | Neon
10 | 40 | Ar | Argon
18 | 84 | ž | Krypton
36 | 131 | Xe | Xenon
54 | | R | Radon
86 | | | | | |------------------------------------|-------|-----|------------|---------------|----|----|----------------|----|----|------------------|----|----------|-----------------|-------|----------|------------------|-----|----|-------------------|-----|----|------------------|---| | | | IIA | | | 19 | ш | Fluorine
9 | | C | 1 | 80 | Ā | Bromine
35 | | Ι | lodine
53 | | Αt | Astatine
85 | | | | | | | | IN | | | 16 | 0 | Oxygen
8 | 32 | S | Sulphur
16 | 79 | Se | Selenium
34 | 128 | <u>e</u> | Tellurium
52 | | Ъ | Polonium
84 | | | | | | | | > | | | 14 | z | Nitrogen 7 | | | Phosphorus
15 | | As | Arsenic
33 | 122 | Sb | Antimony
51 | 509 | Ξ | Bismuth
83 | | | | | | | | > | | | 12 | ပ | Carbon
6 | | Si | Silicon
14 | | ge
Ge | Germanium
32 | 119 | Sn | Tin
50 | 207 | Pb | Lead
82 | | | | | | | | = | | | Ξ | Δ | Boron
5 | 27 | Ν | Aluminium
13 | 70 | | Gallium
31 | 115 | In | Indium
49 | 204 | 11 | Thallium
81 | | | | | | S | | | | | | | | | | | | Zu | Zinc
30 | 112 | ဦ | Cadmium
48 | 201 | Hg | Mercury
80 | | | | | | The Periodic Table of the Elements | | | | | | | | | | | 64 | J
O | Copper
29 | 108 | Ag | Silver
47 | 197 | Αn | Gold
79 | | | | | | e or the | dn | | | | | | | | | | 59 | Z | Nickel
28 | 106 | Pd | Palladium
46 | 195 | 풉 | Platinum
78 | | | | | | aic i abi | Group | | | | | | | | | | 69 | ပိ | Cobalt
27 | 103 | 몺 | Rhodium
45 | 192 | ŀ | Iridium
77 | | | | | | le Perio | | | - I | Hydrogen
1 | | | | | | | 56 | Бe | Iron
26 | 101 | Bu | Ruthenium
44 | 190 | Os | Osmium
76 | | | | | | - | | | | | J | | | | | | 55 | Mn | Manganese
25 | | ဥ | Technetium
43 | 186 | Be | Rhenium
75 | | | | | | | | | | | | | | | | | 25 | ဝံ | Chromium
24 | 96 | Mo | Molybdenum
42 | 184 | > | Tungsten
74 | | | | | | | | | | | | | | | | | 51 | > | Vanadium
23 | 93 | Q
N | Niobium
41 | 181 | Та | Tantalum
73 | | | | | | | | | | | | | | | | | 48 | F | Titanium
22 | 91 | Ż | Zirconium
40 | 178 | Ξ | Hafnium
72 | | | | | | | | | | | | | | | | | 45 | Sc | Scandium
21 | 89 | > | Yttrium
39 | 139 | Гa | Lanthanum
57 * | 227 | Ac | Actinium
89 † | | | | | = | | | 6 | Be | Beryllium
4 | 24 | Mg | Magnesium
12 | 40 | Ca | Calcium
20 | 88 | Š | Strontium
38 | 137 | Ва | Barium
56 | 226 | Ва | Radium
88 | | | | | _ | | | 7 | = | Lithium
3 | 23 | Na | _ | 39 | ¥ | Potassium
19 | 85 | ВВ | Rubidium
37 | 133 | Cs | Caesium
55 | | ř | Francium
87 | | | ı | | | | | - | | | | | | | 5 | 5124/0 | 3/0/1 | N/03 | | | | | | | | - | | 87 | 88 | 4 68 | | | | | | | | | | | | | |--------|--|---|---------------|--------------------|---------------|------------------|-----------------|-----------------|------------------|-----------------|-------------------|-------------------|----------------|-------------------| | * 50 7 | 1 004400 | * F B 7 1 1 0000000000000000000000000000000 | 140 | 141 | 144 | | 150 | 152 | 157 | | 162 | | 167 | 169 | | 100+ | 30-7 I Laminandiu sene.
FOO 102 Antinoid corioc | iold series | ဝီ | Ā | PZ | Pm | Sm | Eu | gg | | D | 운 | ш | T | | -08 | OS ACIIIIC | id selles | | Praseodymium
59 | Œ | Promethium
61 | Samarium
62 | Europium
63 | Gadolinium
64 | Terbium
65 | Dysprosium
66 | 67 | Erbium
68 | Thulium
69 | | | В | a = relative atomic mass | 232 | 3 | 238 | | } | 3 | | | 3 | | 3 | 3 | | Key | × | X = atomic symbol | 드 | Ра | ⊃ | Np | Pu | Am | Cm | | ర | Es | | Md | | | Q | b = proton (atomic) number | Thorium
90 | Protactinium
91 | Uranium
92 | Neptunium
93 | Plutonium
94 | Americium
95 | Curium
96 | Berkelium
97 | Californium
98 | Einsteinium
99 | Fermium
100 | Mendeleviu
101 | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). Lr Lawrencium 103 175 **Lu** Lutetium