	Centre Number	Candidate Number
Candidate Name		

CAMBRIDGE INTERNATIONAL EXAMINATIONS

Joint Examination for the School Certificate and General Certificate of Education Ordinary Level

SCIENCE

5124/3, 5126/3

PAPER 3 Chemistry

OCTOBER/NOVEMBER SESSION 2002

1 hour 15 minutes

Additional materials: Answer paper

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page and on all separate answer paper used.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any two questions.

Write your answers on the lined pages provided and, if necessary, continue on separate answer paper. At the end of the examination,

- 1. fasten any separate answer paper securely to the question paper;
- 2. enter the numbers of the **Section B** questions you have answered in the grid below.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 12.

FOR EXAMINER'S USE	
Section A	
Section B	
TOTAL	

This question paper consists of 9 printed pages and 3 lined pages.

Section A

Answer all the questions.

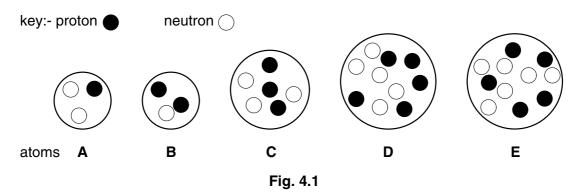
Write your answers in the spaces provided on the question paper.

1 Use the names of the substances in Fig. 1.1 to answer this question.

ammonium sulphate	ethanoic acid	graphite	helium
lime	methanol	oxygen	steel

Fig. 1.1

	Nan	ne		
	(a)	an allotrope of carbon,		[1]
	(b)	an alloy,		[1]
	(c)	a fertiliser,		[1]
	(d)	a noble gas,		[1]
	(e)	an oxide.		[1]
2	(a)	process of photosynthesis takes place in Why are green plants essential to this pro Name two substances that react togethe	ocess?	[1]
	(c)	What type of energy is converted into che		[2]
				[1]


3 Fig. 3.1 lists the solubility in water of several substances.

substances	solubility in water
lead(II) carbonate	insoluble
sodium sulphate	soluble
calcium carbonate	insoluble
sodium hydroxide	soluble
lead(II) chloride	insoluble
lead(II) nitrate	soluble
sodium carbonate	soluble
hydrochloric acid	soluble
nitric acid	soluble
sulphuric acid	soluble

Fig. 3.1

(a)		ne two substances from Fig. 3.1 that when mixed as aqueous solutions form I(II) carbonate.
		and[1]
(b)	(i)	Name two substances from Fig. 3.1 that when mixed as aqueous solutions form sodium sulphate.
		and[1]
	(ii)	How would you obtain pure crystals of sodium sulphate from the mixture of solutions in (i)?
		[3]

4 The diagram in Fig. 4.1 represents the nuclei of five different atoms, A, B, C, D and E.

Choose from the letters A, B, C, D and E, to answer the following questions.

(a)	Which atom has a nucleon number of 6?	

- (b) Which two atoms have three electrons in their outermost electron shell?

 and [2]

 (c) Which two atoms are isotopes of the same element?

 and [1]

 (d) Which atom is an isotope of hydrogen?
- 5 Use the Periodic Table on page 12 to help answer this question.
 - (a) State one way in which the elements in Group I differ from the elements in Group VII.
 - (b) Which Group contains only
 - (i) relatively soft metals,[1]
 - (ii) diatomic non-metals?[1]
 - (c) Which element
 - (i) is in Group V and in period 3,[1]
 - (ii) has a proton number of 79?[1]

6 Fig. 6.1 shows some properties and reactions of several substances.

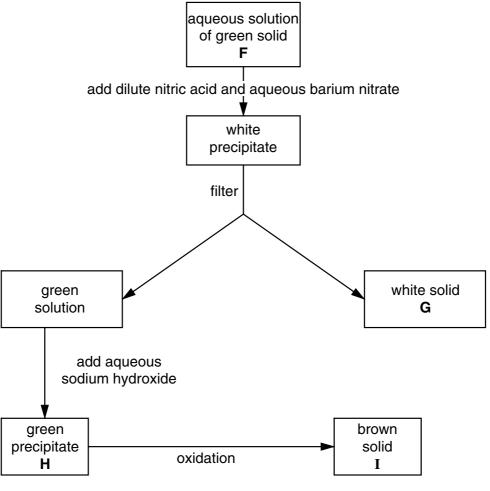


Fig. 6.1

(a) Identify:

green solid F.

- (i) white solid **G**,[1]

 (ii) green precipitate **H**,[1]
- (iii) brown solid I,[1]
- **(b)** Write an equation for any **one** of the reactions in Fig. 6.1.
-[2]

.....[1]

7 (a) Complete the table in Fig. 7.1.

	solution	colour with Universal Indicator solution
(i)	0.1 mol/dm ³ hydrochloric acid	
(ii)	0.1 mol/dm ³ sodium hydroxide solution	
(iii)	a mixture of equal volumes of (i) and (ii)	

Fig. 7.1 [3]

	(b) Cal	lculate the relative molecular mass of sodium hydroxide, NaOH.	
		[Relative atomic masses: A_r : H, 1; O, 16; Na, 23]	
			[1]
	(c) Cal	Iculate the mass of sodium hydroxide in	
	(i)	1000 cm ³ of 1.0 mol/dm ³ sodium hydroxide solution,	
			[1]
	(ii)	1000 cm ³ of 0.1 mol/dm ³ sodium hydroxide solution,	
			[1]
	(iii)	20 cm ³ of 0.1 mol/dm ³ sodium hydroxide solution.	
			[1]
8		hree of the reactions below involve both oxidation and reduction? nese reactions by ticking three of the boxes.	
		$Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$	
		$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	
		$C(s) + O_2(g) \rightarrow CO_2(g)$	
		$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$	
		$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$	
		$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$	
		$NH_4Cl(s) \rightarrow NH_3(g) + HCl(g)$	[3]

9 The diagrams in Fig. 9.1 show the structures of five compounds.

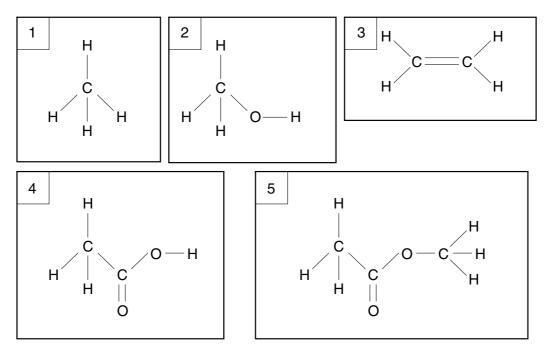


Fig. 9.1

Answer the questions below by stating the numbers of the diagrams.

(a) Which diagram shows

	(i)	methane,	[1]
((ii)	a compound which is acidic,	[1]
(iii)	a compound which decolourises aqueous bromine,	[1]
(iv)	an alcohol?	[1]
(b)	Whi	ch two compounds react together to form the compound	d shown in diagram 5?
		and	[1]

Section B

Answer any two questions.

Write your answers on the lined pages provided, and, if necessary, continue on separate answer paper.

- **10 (a)** Describe, using **one** suitable example, the formation of covalent bonds between two non-metals. [4]
 - (b) Describe how ionic and covalent compounds differ in solubility and electrical conductivity. Use suitable examples to illustrate your answer. [6]
- **11** (a) A solid and a liquid react to form a gas which is insoluble in water. Design and draw a labelled diagram of an apparatus that could be used to collect this gas. [3]
 - (b) Explain how your apparatus can be used to measure the rate of reaction between the solid and the liquid. [3]
 - (c) How can your results from (b) be displayed to show how the rate of reaction gradually slows down and eventually stops? [4]
- 12 (a) Describe how iron can be manufactured from a named ore using coke, C, and limestone, CaCO₃. Write equations for the decomposition of limestone and for the reduction of the ore.
 [6]
 - **(b)** Calculate the maximum mass of carbon dioxide that will be formed by decomposing 25 tonnes of limestone.

[Relative atomic masses: A_r : C, 12; O, 16; Ca, 40] [4]

•••••
••••••
•••••

DATA SHEET
The Periodic Table of the Elements

						-		The Periodic Lable of the Elements			2						
_	=							5	dnoub			=	2	>	5		C
-	=											•	-	•		•	>
							- I										4 T
							Hydrogen										Helium 2
7	6							7				=	12	14	16	19	20
=	Be											Ф	ပ	z	0	ш	Ne
Lithium 3	Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28	31	32	35.5	40
Na	Mg											Αſ	Si	_	ഗ	C	Ā
Sodium 11	Magnesium 12											Aluminium 13	Silicon 14	Phosphorus 15	Sulphur 16	Chlorine 17	Argon 18
39	40	45	48	51	52	55	56	59	29	64	65	20	73	75	62	80	84
¥	Ca	လွ	F	>	ပ်	Mn	Бe	ပိ	Z	Cn	Zu	Ga	Ge	As	Se	ģ	¥
Potassium 61	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
3/O/N	88	88	91	93	96		101	103	106	108	112	115	119	122	128	127	131
8	S	>	Zr	Q	Mo	ဥ	Bu		Pd	Ag	ප	In	Sn	Sb	Тe	Ι	Xe
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	_	Palladium 46		Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209			
S	Ва	Гa	Ξ	<u>Б</u>	>	Be	Os	1	풉	Αn	Нg	11	Pb	Ξ	Ъ	Αţ	Ru
Caesium 55	Barium 56	Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
	226	227															
ì	Ва	Ac															
Francium 87	Radium 88	Actinium 89 †															
*58-71	*58-71 Lanthanoid series	1 ceries	,	140	141	144		150	152	157	159	162	165	167	169	173	175
	A atimoid	301100		ပီ	Ą	2	Pm	Sm	E	g	Q	۵	운	ш	E	Υp	ב
190-10cL	T90-103 Actinoid series	series		Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium

Lr Lawrencium 103 Ytterbium | 70 Nobelium 102 Thulium Md 69 **Fa** Fermium Erbium 89 Einsteinium 99 Holmium 67 Dysprosium 66 Californium Berkelium 65 Gadolinium 64 Curium Europium 63 **Am** Samarium 62 **Pu** Plutonium Promethium 61 **N**eptunium Neodymium 60 238 Uranium Praseodymium 59 Cerium 232 **Th** Thorium 28 90 b = proton (atomic) number a = relative atomic mass X = atomic symbol

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

м 🗙

Key