MARK SCHEME for the NOVEMBER 2004 question paper

5054 PHYSICS

5054/02
Paper 2 (Theory), maximum mark 75

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

GCE O Level

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 5054/02
 PHYSICS
 Paper 2 (Theory)

Page 1	Mark Scheme	Syllabus	Paper

Section A

1 (a) speed uniform or $20 \mathrm{~m} / \mathrm{s}$
stationary/not moving till 20 minutes or after 65 minutes or moves for 45 minutes
(not if inconsistent; all times $\underline{\underline{2}} \mathbf{~ m i n} ;$ ignore acceleration/deceleration periods)
(b) d = st any algebraic or area calculated
or $20 \times 45,20 \times 90,20 \times 45 \times 60,20 \times 90 \times 60$
54000 m or 54 km
(c) any constant speed from $\mathbf{0}$ to $\mathbf{9 0}$ minutes (may stop at $\mathbf{9 0}$ or go down to axis) M1 $10 \mathrm{~m} / \mathrm{s}$ (no e.c.f. b)

2 (a) larger
(b) (i) difference in levels 30
(any start level, 10 N or above not in horizontal section)
B1
(ii) difference in levels 60
(any start level, 10 N or above not in horizontal section) B1
(c) trapped air exerts a pressure \quad B1 pushes the water down (on right) or pressure (in trapped air) > atmospheric

3 (a) (at $8.4 \mathrm{~m} / \mathrm{s}$) resistive force $=320 \mathrm{~N} /$ forward force or no resultant or forces cancel/balance
or if forward force $>$ resistive force then runner accelerates
or if forward force < resistive force then runner decelerates
(not resistive force a maximum, accept backwards force = resistive force)
(b) (i) $1 / 2 \boldsymbol{m v}^{2}$
$1 / 2 \times 60 \times 8.4^{2}$

Page 2	Mark Scheme	Syllabus	Paper
	O LEVEL - NOVEMBER 2004	5054	2

(ii) mgh

C1
$2117 / 60 \times 10$ or $\mathrm{h}=$ P.E. or K.E./mg e.c.f. (i) C1 3.5 m
(accept 3.50, 3.52, 3.53 i.e. 2 or 3 significant figures only)
4 (a) (i) correct normal (by eye to centre of circle) angle between normal and ray 1 marked
(b) ray 1 sensibly reflected and no refracted ray
ray 2 bends upwards (ignore reflection)
ray 3 undeviated (ignore all rays leaving bubble)
(c) (i) $\sin \mathrm{i} / \sin \mathrm{r}$ or ratio of speed in air/vacuum to speed in medium
(ignore real/apparent depth)
(ii) 1.33 or 0.75
(accept 1.326, 1.3, 0.754, 0.8 not 1.325, 1, 0.76)
5 (a) (i) up and down arrow shown
(allow if one arrow and up/down stated in (ii))
(ii) 4 times in one second or once in 0.25 sec

B1
(b) $\mathbf{v}=\mathbf{f} \boldsymbol{\lambda}$ in any algebraic form B1
0.8/4
0.2 m

A1
(c) halve the frequency or move hand once every 0.5 springs

B1
(ignore move hand slower or at half speed or speed of wave double unless spring stretched more)

6 (a) (i) electrons/they move (on sphere) away from rod/to right
negative or electrons repelled by (negative on) rod or like charges repel (actual movement of positive charge max 1 positive electrons max 1)
(ii) positive nearest rod and negative on side furthest from rod
(allow charges just outside sphere no need for same no. of +ve and -ve charges)
(b) only positive on side near rod no e.c.f. a (ii)

Page 3	Mark Scheme	Syllabus	Paper
	O LEVEL - NOVEMBER 2004	5054	2

(c) >1 positive charge distributed over sphere
e.c.f.

B1
(d) plastic/perspex/polythene/rubber/ebonite/glass/wood etc.

B1 6
7 (a) to step down/reduce the voltage
(ignore just step down transformer)
B1
(b) two coils (no label needed)
(not if primary connects secondary)
B1
output/secondary has fewer turns than input/primary clear; coils labelled or right-hand coil has fewer turns
complete (soft) iron (core) labelled
(ignore circuit symbol)
B1
(c) (i) less energy/power/heat loss/heating
(ignore just more efficient)
B1
current is reduced/low
(not if resistance changes)
B1
(ii) resistance is decrease
(resitivity is not resistance) B1
electrical power/energy related to resistance
e.g. $P=I^{2} R, P$ prop to R (not V^{2} / R alone)
or resistance α 1/area
(accept power related to R etc. given in (i)) \quad B1 8

Section B

8 (a) (i) molecules (of copper) vibrate
(allow start to vibrate)
B1
pass on energy/heat/vibration from molecule to molecule (accept to alcohol molecule)

B1
(accept particles/atoms for molecules allow $1 / 2$ for electron conduction description)
(ii) boiling takes in energy and condensation gives out energy

Page 4	Mark Scheme	Syllabus	Paper
	O LEVEL - NOVEMBER 2004	5054	2

(iii) movement of alcohol/vapour fast
(ignore convection)
or pressure difference large
or molecules move fast (with partial evacuation)
B1
(b) (i) amount of energy/heat to change state/evaporate/boil
(condone boil and condense) M1
unit mass $/ 1 \mathrm{~kg} / 1 \mathrm{~g}$ (without change in temperature) A1
(any change in temperature mentioned $0 / 2$)
(ii) mL or $25 \times 840 \quad$ C1

21000 J A1
(iii) $\mathrm{mc} \Delta \mathrm{T}$ or $(\Delta \mathrm{T}=) 21$ 000/4.2 $\times 500 \quad$ C1
$10^{\circ} \mathrm{C}$ A1
(c) (i) black and white/shiny objects whose temperature can be sensed in some way e.g. (metal) plates + cork, thermometers, foil on back of hand, people under umbrellas)
method of producing radiation (e.g. Sun, heater, candle, bulb accept drawn on diagram)
correct observation from a physical measurement
(ignore feels hotter)
B1
(ii) method of obtaining hot black and white surfaces of approximately same
temperature temperature
(same temperature may not be stated)
B1
method of detecting radiation e.g. thermopile, thermotransistor, back of hand,
blackened thermometer, thermometer shows black cools faster

9 (a) (i) low resistance or short circuit or large current (in battery) or no current in coil
(ii) brushes touch gaps or no contact with ring or coil vertical
no current or open circuit or no forces or no moment
(b) (i) force x distance M1
perpendicular distance A1

Page 5	Mark Scheme	Syllabus	Paper

(ii) 3×0.065 or $3 \times 0.065 / 2$ C10.195 Nm(accept 0.19 or $0.20 ; 0.39$ or $0.0975 \mathrm{Nm} . . . \mathrm{C} 1$)A1
(iii) large (perpendicular) distance (between forces/axis when coil horizontal) B1
(iv) axes labelled and graph any repeating shape with same sign B1(not a sine wave either side of axis)1 revolution correct on time axisB1
(should be between three maxima/minima if graph always same sign, if graphgoes either side of axis e.g. sine wave, award mark for period of wave drawn)
(c) (i) voltage (p.d.) (across motor) B1
current (through motor) B1
power $=\mathrm{VI}$ B1
(ii) correct series circuit with ammeter, cell etc., any symbol for motor (accept lamp labelled motor condone V in series) B1
voltmeter in parallel with motor
(or cell if no extra resistor) B1 15
10 (a) (i) 53 protons B1
78 neutrons B1
53 electrons in orbit/around centre/outside nucleus (can be on diagram) B1
(ii) 131 on top B1
54 underneath B1

Page 6	Mark Scheme	Syllabus	Paper

(b) comparison
nature
mass
charge
ionising effect
penetrating effect
speed
deflection in E or B fields
tracks in cloud chamber compared

example

β electron γ electromagnetic or wave
β small, 1/2000, γ zero
β negative or charged, γ zero/neutral
β larger than γ
β penetrates less, β but not γ stopped by A1
β fast, γ at speed of light
β deflected γ not
β thin or wavy lines γ no tracks or tracks appear

ANY 3 correct which may be given as lists or implied comparisons B3
If more than 3 comparisons give a mark for each one correct to max 3
then -1 for each clearly wrong statement e.g. β is a helium nucleus, β do not travel in a vacuum
ignore correct ideas but with a wrong fact e.g. β heavy, γ no mass; β stopped by skin, γ is not
ignore unclear comparisons e.g. γ stronger, β travel shorter distances - give mark if medium specified, γ are rays but β particles; β straight γ wavy, wavelengths mentioneds mentioned
(c) (i) (radioactive) count/emission random
(accept not constant)
sample not mixed (in blood)
(accept not diffused)
or takes time to circulate/mix/reach other arm
(ii) 38.5 no unit needed
(accept 38, 39)
(iii) $7480 \mathrm{~cm}^{3}$
(7481, 7500 i.e. no significant figure penalty) e.c.f. (ii) i.e. $144000 \times 2 /(i i) B 1$

Page 7	Mark Scheme	Syllabus	Paper
	O LEVEL - NOVEMBER 2004	5054	2

(iv) attempt to halve or $1 / 4$ seen
C1

10 no unit needed A1
(d) keep distance/use tongs/wear a radiation badge or detector/store in lead container/suitable absorber between source and doctor e.g. lead apron/lead gloves/lead suit
not wear a radioactive suit/wear gloves or do not touch source/look at source
B1 15
MAX 1 unit error per question in the paper.
There are to be no significant figure penalties except in Q3 (b) (ii).

