MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

5054 PHYSICS

5054/42
Paper 4 (Alternative to Practical), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2011	5054	42

1 (a) (i) two metre rules end to end / measuring tape / one ruler and mark
B1
$\begin{array}{ll}\text { (ii) marker on the ramp } & \text { B1 } \\ \text { align with same point on car } & \text { B1 }\end{array}$
(iii) vertical height marked from floor to between lower wheel and top of car

B1
(b) (i) 175.(2) or $1.75(2)$ seen

C1
175 cm or 1.75 m
A1
(ii) push on release / car does not run straight / uneven ramp or floor / friction varies / wind or draught (varies) / parallax error (in measuring distance)

B1
(c) (i) axes: labels correct way round, labelled quantity and unit B1
scales: more than $1 / 2$ grid, sensible B1
y-axis: $2 \mathrm{~cm} \equiv 20 \mathrm{~cm}$ or $25 \mathrm{~cm} \quad x$-axis: $2 \mathrm{~cm} \equiv 4 \mathrm{~cm}$ or 5 cm points plotted accurately within $1 / 2$ small square

B1
best fit straight line neatly drawn within plotted points
B1
(ii) $\quad \Delta h \propto \Delta d_{\mathrm{av}} /$ as h increases d increases proportionally $/ y=m x+c$ as h increases d increases PLUS linear / not through origin / not directly proportional

B1
ecf directly proportional if graph straight line through origin
(d) car must be implied in answer
does not move / stops before reaching point 2 / moves to bottom of ramp then stops

B1 ecf graph
[Total: 13]

2 (a) (i) accurate horizontal distance marked from centre of lens to screen
B1
(ii) focal length / image distance

B1
(b) repeat and average (measuring distance)

B1
any TWO good practical points (may be marked on diagram) e.g.:

- adjust screen/lens distance to give clear image
- lens in holder
- lens and screen perpendicular to ruler / correct use of set square explained
- avoid parallax error in reading ruler/measuring f
- lens/screen close to ruler
- experiment in darkened room
allow alternative experiments to measure f
[Total: 5]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2011	5054	42

3 (a) parallel
(b) (i) correct voltmeter symbol drawn across power supply B1
(ii) X marked in series with resistor A

B1
B1
(c) (i) 1.5 V cao B1
(ii) $0.1(0) \mathrm{A} \operatorname{ecf}(\mathrm{c})(\mathrm{i}) \div 15$ B1
(d) circuit 2 PLUS
two series resistors in parallel loop / no resistor in series with power supply owtte / resistance is $62 / 3 \Omega$

B1
[Total: 6]

4 (a) (same) volume/level/mass of water
B1 any ONE from:

- initial temperature (of water)
- size/shape/material of test tube
- identical thermometers
- same external conditions, e.g. room temperature / draught / position in room / humidity

B1
(b) time or $t /$ minutes (min) B1
temperature or T or $\theta /{ }^{\circ} \mathrm{C}$
B1
(c) both axes labelled AND correct shape for one curve (not to x-axis) B1 A and B similar shape with A initially cooling faster than B, one labelled B1
[Total: 6]

