MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

5054 PHYSICS

5054/02
Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2009	5054	02

1 unit penalty per question.
Allow 2 or more sig. figs throughout paper. 2 or 3 sig. fig. answers must be correctly rounded.

Section A

1 (a) (speed) increases or (paper) accelerates
(speed) becomes constant/uniform or acceleration zero (after 0.5 s)
(b) any clear change in distance/time or 1.87 (m/s) (allow 1.9)
$2.3-2.5 \mathrm{~m} / \mathrm{s}$ A1
$\begin{array}{ll}\text { (c) PE at beginning of a change } & \mathrm{B} 1 \\ \text { heat/internal energy/thermal energy at end of a change/K.E. of air } & \mathrm{B} 1\end{array}$

2 (a) (i) conduction
(ii) molecules hit each other or molecules pass vibration on or free electrons move (through metal) and hit molecules
(b) (i) downwards at or near X
(ii) hot water less dense or cold water more dense B1
hot water rises (not heat rises) or cold water falls
B1
convection current mentioned or water flows to replace hot water that rises or rising and falling described or water cools at surface

3 (a) ($E=$) P.t in any algebraic form or 85×120 or 85×2 or 170
C1
10200 J or $2.8 \times 10^{-3} \mathrm{~kW} \mathrm{~h}$
A1
(b) $(\mathrm{H}=) \mathrm{mL}$ seen in any algebraic form or (a)/31 or (a)/0.031

C1
330 or $329 \mathrm{~J} /$ g or $3.29 \times 10^{5} \mathrm{~J} / \mathrm{kg}$ ecf (a)
A1
(c) heat/time needed to warm ice to $0^{\circ} \mathrm{C} /$ melting point/freezing point

4 (a) solid more regular/ordered etc. or less space/separation between molecules or vv or solid molecules fixed and liquid molecules move throughout
(b) (i) solids: strong(er) forces/bonds or energy not enough to break molecules free or Vv
(ii) fast(er)/high(er kinetic) energy molecules escape/evaporate molecules left are slower/less kinetic energy (on average) B1
(iii) (hotter) molecules move faster/higher energy

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2009	5054	02

5 (a) (i) correct ray B1
(ii) correct angle marked to normal B1
(iii) (the angle) between the incident ray and the normal (at the point of contact) B1
$\begin{array}{ll}\text { (b) correct ray from hat to eye } & \text { B1 } \\ 0.85-1.15 \mathrm{~m} & \text { B1 }\end{array}$

6 (a) (sound) too high a frequency to be heard or (frequency) above $20 \mathrm{kHz} \quad$ B1
$\begin{array}{ll}\text { (b) }(f=) v / \lambda \text { or } v=f \lambda \text { algebraic or numerical } & \mathrm{C} 1 \\ 1250000 \mathrm{~Hz} & \mathrm{~A} 1\end{array}$
(c) vibrate/oscillate C1
vibration etc. in same direction as/parallel to wave/energy or horizontally A1
(d) pressure increases and decreases or compressions and rarefactions mentioned
in (d) or particles come together and move apart

7 (a) NS marked on each piece correctly
(b) NS/unlike/opposite poles attract
B1
switch closes or soft-iron/contacts touch B1
(c) (i) resistance decreases B1
(ii) current increases clearly in coil/through thermistor B1 magnetic field (in coil) (and contacts close)

8 (a) number of protons and neutrons B1
protons and neutrons in the nucleus
(b) (i) 2
(ii) 4
(iii) 90 or 92-(i) and (iv) 234 or 238-(ii)

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2009	5054	02

Section B

9 (a) circuit diagram showing power supply, lamp and ammeter in series B1
voltmeter across lamp B1
ensure voltage is 24 V in some way e.g. power supply 24 V B1
$V \times I$ or voltmeter \times ammeter readings B1
(b) (i) $\mathrm{P} 0.63(2) \mathrm{A}$ B1
Q 1.26(3) A B1
R 1.89(5), 1.9 A or sum of candidate's P and Q B1
(ii) $240 /$ current at R or $1 / R=1 / R_{1}+1 / R_{2}$ C1
$127,130,126.7 \Omega \operatorname{ecf}(i)$ A1
(c) (i) $(I=) V / R$ numerical or algebraic C1
0.42 A A1
(ii) 80 V or 79.8 V ecf (i) B1
(d) one lamp goes out/blows/fuses/switched off they do not all go out/others stay on B1 lamps are working at correct/more brightness/voltage/current powerB1
reference to voltage is 240 V across each lamp or voltage shared in series/<240 Vor current value(s) quotedB1
10 (a) (i) air resistance increases (as speed increases) B1
(at constant speed) becomes equal to driving force/applied force etc. B1
(ii) driving force (forward force) larger (than air resistance/backwards force) B1
(b) (i) ($E=)^{1 / 2} m v^{2}$ algebraic formula C1
$1 / 2 \times 75 \times 4^{2}$ C1
600 J A1
(ii) $(a=)$ F/m algebraic seen or $10(\mathrm{~N})$ used as force C1
$0.13 \mathrm{~m} / \mathrm{s}^{2}$ A1
(c) (i) friction (in chain/axles) or rubbing of surfaces B1
heat or thermal energy produced B1
(ii) (efficiency = useful) energy output/energy input algebraic or numerical or 380 seen C1
0.95 or 95% A1

