Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

PHYSICS
5054/03

Paper 3 Practical Test
May/June 2006

ANSWER BOOKLET

2 hours

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
All of your answers should be written in this Answer Booklet: scrap paper must not be used.
Answer all questions.
Graph paper is provided in this Answer Booklet. Additional sheets of graph paper should be used only if it is necessary to do so.
At the end of the examination, fasten all work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
Total	

This document consists of $\mathbf{6}$ printed pages and $\mathbf{2}$ blank pages.

BLANK PAGE

Section A

1 (a) (ii) determination of L
(iii) determination of D
(b) explanation of how you made sure that L was determined as precisely as possible
(c) (ii) record of V
(d) calculation of V_{s}
(e) calculation of $\frac{V_{\mathrm{s}}}{V_{\mathrm{s}}+V}$

2 (a) (ii) determination of x
(b) explanation of how you made sure that the metre rule was vertical
(c) (i) time for 20 oscillations
(ii) statement of one precaution
(iii) calculation of T
(d) calculation of $\frac{T^{2}}{x}$

3 (a) circuit diagram of the arrangement set up by the Supervisor
(b) record of I_{1}
(c) record of I_{2}
(d) record of I_{T}
(e) estimation of the resistance of R_{2}

4 (a) (i) record of m_{B}
(iii) determination of m_{W}
(b) (iii) record of θ_{R}
(c) table of values of t and θ

(d) using the grid on page 7 , plot a graph of $\theta /{ }^{\circ} \mathrm{C}$ on the y-axis against $t /$ s on the x-axis
(e) determination of the rate of rise of temperature at $t=150 \mathrm{~s}$
(f) calculation of power using power $=\left(m_{\mathrm{W}} c_{\mathrm{W}}+m_{\mathrm{B}} c_{\mathrm{B}}\right) \times($ rate of rise of temperature $)$

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

