CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2013 series

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		2	Mark Scheme	Syllabus	Paper			
			GCE O LEVEL – October/November 2013	5070	22			
A 1	(a) ox	ygen /	O ₂ (1)		[1]			
	(b) nic	nickel / Ni (1)						
	(c) su	sulfur / S (1)						
	(d) po	potassium / K (1)						
	(e) silv	ver / A	g (1)		[1]			
	(f) zir	nc / Zn	(1)		[1]			
					[Total: 6]			
A2	(a) (i)		reases as number of carbon atoms increases / increns decreases (1)	ases as number of	carbon [1]			
	(ii)	etha	noic (acid) (1)		[1]			
	(iii)	corre	ect formula for propanoic acid showing all atoms an	d all bonds (1)				
	` ,		нно	,				
		Н	-C-C-C-O-H					
			Н Н		[1]			
	(b) (i)	C ₅ H	₁₀ O ₂ (1)		[1]			
	(ii)	any	value between and including 180–195°C (1)		[1]			
	(-) (!)	11						
	(c) (i)		rogen (1) OW: H ₂		[1]			
	(ii)	C ₃ H ₂	₇ CO₂Na / C₄H ₇ O₂Na / correct displayed or structural	formula (1)	[1]			
	(d) (i)	spee	eds up reaction (rate) / reaction faster (1)					
			ers activation energy/makes reaction go by different ers energy barrier (1)	route using less en	ergy / [2]			
	(ii)	solve	ent / fragrance / perfume / food additive / flavourings	s / polyesters / teryle	ene (1) [1]			
	(iii)	prop	yl methanoate (1)		[1]			
	[Total:							

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	5070	22

(b)

isotope	²⁸ Si	³⁰ Si	
number of protons	14	14	(1)
number of electrons	14	14	(1)
number of neutrons	14	16	(1)

[3]

(c)
$$\operatorname{Si} + 2\operatorname{C} l_2 \to \operatorname{SiC} l_4$$
 (1)

(d) (i) does not conduct electricity / does not conduct heat (1)

liquid (at room temperature) / low melting point / low boiling point (1) [2]

(ii) bonding pair between each of the 4 Si and Cl atoms (1)

rest of structure completely correct (1)

IGNORE: inner shell electrons [2]

(e) many (strong) bonds / many (covalent) bonds / lattice / giant structure / lattice of covalent bonds (1)

a lot of energy needed to break the <u>bonds</u> / high temperature needed to break the <u>bonds</u> / strong <u>bonds</u> (1)

[Total: 11]

[2]

A4 a (i) Any **two** of:

- respiration/fermentation (1)
- decay of organic matter / decomposition of organisms (1)
- combustion of carbon (compounds)/combustion of fossil fuel / combustion of named fossil fuel (1)
- decomposition of carbonates/decomposition of limestone (1)
- from increasing temperature of the oceans / removal of (dissolved) carbon dioxide from oceans (1)
- volcanoes (1) [2]
- (ii) photosynthesis/absorbed by oceans/absorbed by seas (1) [1]
- (b) (i) gas which absorbs infra-red (radiation) / gas which absorbs infra-red (light) (1)

 ALLOW: gas which traps heat / gas which absorbs heat

 [1]

Page 4				Mark Scheme	Syllabus	Paper
				GCE O LEVEL – October/November 2013	5070	22
	(ii) name: methane/other named greenhouse gas (1) ALLOW: CFCs/nitrous oxide (methane) from swamps / rice paddy fields / gas from waste from animal digestion / termites / wetlands (1) ALLOW: (for methane) bacterial action (unqualified) / fracking / animal digestion (unqualified) / permafrost / glaciers / landfill					
			NÖT	E: 2nd mark for source is dependent on the correct		[2]
	(c)	 (i) (acid which is) incompletely ionised (in water) / (acid which is) partly dissociated / (acid which is) incompletely dissociated (in water) (1) 			ociated / [1]	
		(ii)	add	universal / full range indicator (1)		
			com	pare the colour with (colour on) indicator colour cha	ırt (1)	[2]
	 (d) 2NaHCO₃ → Na₂CO₃ + CO₂ + H₂O correct formulae (1) correct balance (1) 				[2] [Total: 11]	
A 5	(a)	Mg	+ 2H	$Cl \rightarrow MgCl_2 + H_2 (1)$		[1]
	(b)	(i)		s labelled correctly with appropriate units e.g. volum in seconds/s on horizontal axis (1)	e in cm³ on vertic	al axis and
			then	h rising steadily from near 0–0 point (although 0 do either levelling off horizontally or rising with decrea hed (1)		
		(ii)		al gradient less steep from the start		
) tion finishing at same volume of gas as original or s to finish at the same volume as line A (1)	till below original	level but [1]
	(c)			ass of $MgC_2 = 48$ (1) 50% (1)		
		1 mark for ecf from wrong molar mass of magnesium carbide			[2]	
	[Total				[Total: 6]	
						[1044.0]

Page 5		e 5	Mark Scheme	Syllabus	Paper	
			GCE O LEVEL – October/November 2013	5070	22	
B6 (a			ks for the reactions at the anode and cathode: e reaction: $2O^{2-} \rightarrow O_2 + 4e^- / 2O^{2-} - 4e^- \rightarrow O_2$ (1)			
	С					
	2 m A A					
	 Any one of: cryolite increases conductivity of aluminium oxide / cryolite helps in dissolv electrolyte mixture (1) 					
	•	unto d (4)				
	•		ny temperature between and including 900–1200°C q t anode carbon + oxygen → carbon dioxide (in words	` ,	[4]	
(k	b) (i	i) lo	ow density (1)		[1]	
	(ii	•	good) <u>electrical</u> conductor (1) CCEPT: has mobile electrons		[1]	
(0	c) (i	i) h	as an oxide layer (1)			
			xide (layer) is unreactive / oxide (layer) 'sticks' strongl of the aluminium) / oxide is non-porous (1)	y to the surface	[2]	
	(ii	i) d	isplacement / redox (1)		[1]	
	(iii	i) A	$l_2(SO_4)_3$ (1)		[1]	
					[Total: 10]	
B7 (a	a) (ເ	unsa	turated): has (carbon-carbon) double bond (1)			
	•	-	ocarbon): contains carbon and hydrogen only / has no on and hydrogen (1)	other elements tha	an [2]	
(k	b) (i	i) h	igh temperature / values between and including 400–5	500°C (1)		
		С	atalyst/aluminium oxide / zeolites / silicon dioxide (1)		[2]	
	(ii	i) C	$C_{14}H_{30} \rightarrow C_2H_4 + C_{12}H_{26} (1)$		[1]	
(0	c) (i	p	ling film/ bottles / bags / packaging / sandwich bags / roofing / toys / jugs / plates / dustbins / water pipes / sipes / bubble wrap / cable coverings / pond linings / roaints / glues / waxes / (outdoor) furniture e.g. tables / cables /	crew closures / sac pes / nets / greenh	cks / gas	
	(ii	- 1	C_2H_5 / $C_2H_5CH=CH_2$ (1) $C_2H_5CH=CH_2$		[1]	

Page 6		ge 6	Mark Scheme	Syllabus	Paper		
			GCE O LEVEL – October/November 2013	5070	22		
(d	d)	28 g ethene → 46 g ethanol (1)					
		0.4 tonnes gives 0.4 × 46/28 OR 0.657 / 0.66 (tonnes) (1) ALLOW: ecf from incorrect molar masses					
		$(0.657 \times 5/100) = 0.03 / 0.033 / 0.0329$ (tonnes) (1) ALLOW: ecf from step 2 i.e. for x answer in step 2 by 5/100					
					[Total: 10]		
38 (a		Idea of reactants being converted to products at the same time as products converted to reactants / reaction is reversible (1) reactants and products at constant concentrations / amounts of reactants and products are constant(1)					
		OR rate of	forward reaction = rate of backward reaction = 2 mark	«s	[2]		
(b	o)	(i) m	ol HI = 0.94 x 50/1000 OR 0.047 mol (1)				
		m	ass HI = 0.047 x 128 = 6 / 6.0 / 6.02 / 6.016 (g) (1)		[2]		
		45 in riç	25°C high <u>er</u> concentration of reactant / low <u>er</u> concentration of reactant / high <u>er</u> concentration of reactant / high <u>er</u> concentration to the left / increase in temperature shifts reaction to the left / increase in temperature concentration of reactant increases as temperature products increases as temperature increases (1)	ation of products / perature shifts re	decrease action to		
		re	action is endothermic (1)		[2]		
(с	:)	labelle	ed products / H_2 + I_2 on right and above the reactants (1)			
		enthal	py change shown as upward pointing arrow with ΔH or	· 'enthalpy change	e' (1) [2]		
(d	d)	add (a	queous) silver nitrate / lead nitrate (1)				
		yellow	precipitate (1)		[2]		
					[Total: 10]		
20 /a	٠,	to inon	ease plant growth / to improve plant growth / to grow b	ottor / to incress	the even		

B9 (a) to increase plant growth / to improve plant growth / to grow better / to increase the crop / to increase the yield / to make more (plant) proteins / to make more amino acids / speeds up growth (of crops) (1) [1]

(b) $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$ (1) [1]

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	5070	22

(ii) ammonia is produced / NH₃ produced (1)

(d) mol HC
$$l = 0.01 \times 4/1000$$
 OR 4×10^{-5} (1)

mol Ca(OH)₂ =
$$2 \times 10^{-5}$$
 / half answer to mol HC l (1)

concentration of Ca(OH)₂ =
$$(2 \times 10^{-5} \times 1000 / 10)$$

= 2×10^{-3} mol / dm³ (1) [3]

(e) heat solution to crystallisation point / leave in a warm place / partially evaporate solution (1)

filter (off crystals) / pick out crystals

AND

dry crystals with filter paper (1)

[2]

[Total: 10]