MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper			
			GCE O LEVEL – October/November 2010	5070	22			
A 1	(a) (i)	a) (i) potassium / K						
	(ii)	alum	ninium / Al		[1]			
	(iii)	iron	/ Fe		[1]			
	(iv)	mag	nesium / Mg		[1]			
	(v)		er / Ag OW: symbols such as Ag, Fe etc.		[1]			
	 (b) <u>positive ions</u> regularly arranged; ALLOW: space between ions as long as the arrangement is regular ALLOW: ions touching ALLOW: positively charged atoms for + ions ALLOW: large empty circles in regular arrangement and labelled as positive ions 							
	electrons shown as negative charges <u>between the</u> ions; ALLOW: very small empty circles between the ions and labelled electrons ALLOW: electrons within very small circles / electrons as e ⁻ or e or – IGNORE: disparity between ionic charges and number of electrons NOT: electrons as negative charges in large circles NOTE: mark independently							

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – October/November 2010	5070	22
A2	(a)	(i)	ALL	ose; OW: other suitable sugars e.g. sucrose OW: sugar ORE: carbohydrate		[1]
		(ii)	temp IGN0 REJ lack	two from: Derature within range 20–40°C; ORE: temperatures below 20°C ECT: high temperature / temperatures above 40°C of oxygen / lack of air / anaerobic ECT: oxygen needed		[2]
			yeas			
				er present / in solution / moisture present / damp ECT: dry		
				neutral ECT: acid / alkali		
				ORE: pressure ORE: optimum pH / temperature etc.		
	(b)	ALL ALL	OW: OW:	$I_2O \rightarrow C_2H_5OH$ displayed / graphical formulae C_2H_6O for ethanol :: state symbols		[1]
	(c)	(i)	ethy	l ethanoate / ethyl acetate		[1]
		(ii)	ALL IGN	rification / addition-elimination / condensation / ester fo OW: reversible / equilibrium (reaction) ORE: exothermic / endothermic ECT: addition alone	ormation;	[1]
	(d)	(i)	prop	anol;		[1]
		(ii)		Н Н Н H-C-C-C-O-H H Н Н		[1]
				OW: structure of propan-2-ol OW: –OH in place of –O–H		
						[Total: 8]

	Page 4			Mark Scheme: Teachers' version	Syllabus	Paper		
				GCE O LEVEL – October/November 2010	5070	22		
A3	(a)			/ min le AND units must be correct for one mark		[1]		
	(b)	all the <u>zinc</u> was used up / there was no <u>zinc</u> left / <u>zinc</u> is limiting; IGNORE: the zinc no longer reacted / zinc finished reacting / all the zinc dissolved						
	(c)	(i)	line	steeper from the 0-0 point AND ending at the same lev	vel (40 cm ³)	[1]		
		(ii)	mak ALL	ers the activation energy / makes the reaction go by a es the reaction go by faster pathway; OW: makes the reaction go by a different pathway ORE: supplies activation energy / increases speed of r		oathway / [1]		
	(d)	 goes slow<u>er</u> / speed decreases / small<u>er</u> surface area (with larger pieces) / less area exposed (with larger pieces); ALLOW: (reaction) takes more time IGNORE: goes slowly / small surface area REJECT: goes slower at the start + larger surface area for larger pieces 						
		few <u>er</u> collisions per minute / few <u>er</u> particles exposed to react per minute / particles collide less often / frequency of collisions decreased / collision rate lower / chance of collisions decreases; Answer must be comparative e.g. NOT: few collisions per minute						
	(e)	•	incre ALL	from: eases / goes faster OW: (reaction) takes less time : goes fast		[2]		
		•	high IGN	cles have more energy (at higher temperature) / p er temperature) / particles collide faster / collision rate ORE: particles vibrate more E: must have reference to particles or named particles	increases;	aster (at		
		•		e particles have activation energy / more chance of suc sions are successful	ccessful collision	ns / more		

[Total: 8]

	Page 5			Mark Scheme: Teachers' version	Syllabus	Paper	r		
		0		GCE O LEVEL – October/November 2010	5070	22			
A4	(a)	ALL IGN eler	LOW: IORE	e containing two atoms / two atoms joined (by bond) / a has two atoms : two atoms / two atomic / mention of states / ment s / made of two elements / elements with two ato d	ion of same or		[1]		
	(b)	(i)	black ALL NOT NOT	darker / chlorine green bromine red (or brown or red- k or grey or black OW: goes from green to black or from yellow (F ₂) to bla : iodine dark brown / silver : colour increases / gets more intense ECT: chloride / bromide / iodide (instead of halogens)		ne grey-	[1]		
		(ii)		nine – liquid; (1) ne – solid (1)			[2]		
	(c)	(i)		$P 2I^- \rightarrow 2Br^- + I_2$ ORE: state symbols / K ⁺ ions			[1]		
		(ii)	ACC REJ REJ yello (both	(aqueous) silver nitrate / (aqueous) lead nitrate; (1) EPT: formulae ECT starch test alone / addition of chlorine alone ECT: if incorrect acid added w precipitate; (1) n yellow and precipitate needed for mark) E: second mark dependent on correct reagent.			[2]		
		(iii)	chlo	rine more reactive than bromine (or reverse argument) : chloride more reactive than bromine			[1]		
	(d)	ALL ALL	OW: OW:	⁺ and Cl ⁻ (both needed for the mark) H ⁺ / H ₃ O ⁺ ,Cl ⁻ and OH ⁻ correct answer as part of equation e.g. HC $l \rightarrow H^+ + C$ H ⁺ C l^-	21-		[1]		
	(e)	e) moles HCl = 0.015 × 6/1000 OR 9 × 10 ⁻⁵ ; (1) moles Ca(OH) ₂ = ½ those of moles HCl; (4.5 × 10 ⁻⁵) (1) ALLOW: any indication of correct 1:2 ratio molarity of Ca(OH) ₂ = 4.5 × 10 ⁻⁵ × 1000/20 = 2.25 × 10 ⁻³ (mol / dm ³) (1) ALLOW: correct answer without working / 2.3 × 10 ⁻³ (mol / dm ³) ALLOW: Use of $\frac{V_1M_1}{V_2M_2}$ with correct figures e.g. $\frac{20 \times M_1}{0.015 \times 6}$ (1 mark) correct use of 1:2 ratio e.g. for the above ½ = V ₁ M ₁ / V ₂ M ₂ (1 mark) correct answer (1 mark)					[3]		

[Total: 12]

	Page 6			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE O LEVEL – October/November 2010	5070	22	
A5	(a)	(i)	1 m	ark for each pair of matching descriptions up to max of	2 marks		[2]
			•	diamond: atoms closely packed graphite: layers / atoms less closely packed /			
				diamond: each atom joined to 4 other atoms graphite: each atom joined to 3 others ALLOW: (atoms in) diamond form more bonds than gr	aphite		
			•	diamond: atoms arranged tetrahedrally / in a pyramid / ALLOW: in triangles graphite: atoms arranged in hexagons / rings / layers	/ in bent hexagor	ns /	
			•	diamond: <u>all</u> atoms connected (by covalent bonds)/ graphite: some atoms (i.e. those between layers) not bonds)	connected (by	covalent	
			•	graphite: had intermolecular forces / van der Waal's fo diamond doesn't / has strong forces or bonds through			
			•	diamond has no free moving electrons / no delocalised involved in bonding graphite has (some) delocalised / mobile electrons	d electrons / all e	lectrons	
		(ii)	-	raphite the <u>layers</u> can slide / weak forces between th es between the <u>layers;</u>	e <u>layers</u> / interm	olecular	[1]
			cova ator ALL	liamond there is continuous 3 dimensional structure alent bonds are linked in all directions / (strong) bond ns in fixed positions OW: <u>all</u> the atoms are bonded together IECT: ionic structure	· /		[1]
	(b)	(i)	ALL gain ALL	gen removed from the tin oxide / it loses oxygen / carbo OW: oxidation number of tin (in tin oxide) decreases / t is electrons OW: tin loses oxygen / Г: wrong oxidation numbers / electron gain without qua	tin (in tin oxide)	away;	[1]
		(ii)	IGN with	poisonous / toxic; ORE: kills red blood cells / stops red blood cells carr haem ORE: harmful / causes pollution / dangerous / hazardo		ombines	[1]

Page 7			Mark Scheme: Teachers' version	Syllabus	Paper
			GCE O LEVEL – October/November 2010	5070	22
(0	c) (i)		$e^+ C \rightarrow 2CO$ ORE: state symbols		[1]
	(ii)	2 no oute	ectrons shared between C and O; (1) on bonding electrons on outer shell of oxygen and 2 n er shell of carbon (1) IECT: 0 non bonding electrons on outer shell of oxy	-	[2]
		elec IGN IGN	electrons on outer shell of carbon ORE: dots / crosses ORE: inner shell electrons FE: mark these points independently		bonding
	(iii)) CrC ALL	₆ O ₆ OW: Cr(CO) ₆		[1]
					[Total: 10]
B6 (a	Â	LLOW:	psorb CO_2 from atmosphere / plants take up CO_2 in pho plants use carbon dioxide	otosynthesis; (1)	
			en out in respiration; (1) carbon dioxide breathed out in animals		
	id	ea of (of CO ₂ given out (in respiration) equal to that absorb roughly) equal uptake and release of carbon dioxide; (carbon dioxide given out in balance with carbon dioxide	1)	thesis) / [3]
(1	b) (i)) any ∙	two possible consequences (1 mark for each) e.g. sea level rise / flooding of low lying land / ALLOW: floods		[2]
		•	NOT: increase in water level climate change / extreme weather / increased rainfall / NOT: weather unpredictable desertification / <u>more</u> forest fires / <u>more</u> droughts /	1	
		•	melting of glaciers / melting of polar ice caps / melting NOT: increase in temperature / greenhouse effect skir	-	
	(ii)	ALL	$+2O_2 \rightarrow CO_2 + 2H_2O$ OW: multiples ORE: state symbols		[1]
	(iii)	ALL	stitution (by chlorine) / reaction with chlorine (in the ligh OW: suitable word equation or symbol equation IECT: addition reaction	nt) /	[1]

Pa	ge 8			Paper
(c)	(i)	GCE O LEVEL – October/November larger / longer / heavier / molecules have higher ALLOW: higher boiling point when more carbor IGNORE: the boiling points increase / they get IGNORE: higher boiling point with more bonds / melting points / 'bond' breaking between mole	r boiling points; n atoms (in molecule) higher / reference to intermolecula	22 [1] ar forces
	(ii)	high temperature / heat; ALLOW: quoted temperatures between 300°C-	-800°C	[1]
		EITHER: Catalyst / named catalyst e.g. aluminium oxide ALLOW: porous pot / ceramics REJECT: incorrect catalyst OR:	/ silicon dioxide / zeolites	[1]
		high pressure / quoted pressure between 50-20	00 atmospheres	
				[Total: 10]
37 (a)		olid ions can't move / ions in fixed position / no f IORE: there are no ions / reference to electrons	ree ions / ions are in a lattice	e; [1]
	ALL IGN	en molten ions can move / ions are free to move OW: ions are free IORE: ions moving in solution JECT: reference to electrons moving (in addition		[1]
(b)	ALL ALL	de: chlorine AND cathode: zinc OW: $Cl_2 / Cl / Zn$ OW: correct products from equation (need not b JECT: Cl^- / chloride / Zn^{2+}	be balanced)	[1]
(c)	1 m 1 m ALL	$H^- \rightarrow O_2 + 2H_2O + 4e^-$ park for correct reactants and products (OH ⁻ , O ₂ park for correct balance with electrons LOW: multiples in both cases LOW: e for e ⁻	and H ₂ O)	[2]
(d)		l (aqueous) sodium hydroxide / other suitable hy T: hydroxide alone	rdroxide / (aqueous) ammon	ia; (1)
	whit	te precipitate; (1)		
		cipitate soluble in excess (hydroxide or ammo purless solution in excess (1)	onia) / dissolves in excess	/ gives [3]
(e)	corr	rect formula masses 136 for $ZnCl_2$ AND 204 for rect answer (3.4 × 204/136) = 5.1 (g) (1) LOW: error carried forward from <u>one</u> incorrect for		[2]
				[Total: 10]

	Page 9			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE O LEVEL – October/November 2010	5070	22	
B8	(a)	(i)	 i) magnesium oxide and hydrogen (both required) ALLOW: correct formula of products IGNORE: incorrect equation 				
		(ii)	1 mark	COOH + Mg \rightarrow (CH ₃ COO) ₂ Mg + H ₂ < for correct reactants and products < for balance (dependent on correct reactant and pro	ducts)	[2]	
	(b)	any ∙		from: /drochloric acid to (excess) magnesium carbonate; CT: this first mark if titration suggested		[3]	
		•	heat fi from th	off excess carbonate); Itrate or solution to crystallisation point / evaporate ne filtrate / leave in a warm place / leave to crystallise heat / dry it / put it in the oven / let all water evaporat	e;	ie water	
		•	pick o	ut crystals / filter off crystals / dry crystals on filter pa	per		
	(c)	•	,	lecomposition ndothermic		[1]	
	(d)	(i)	ALLO distand ALLO limewa ALLO	or strength of Bunsen flame / W: temperature of Bunsen / temperature / amounce of Bunsen flame from tube / amount of carbonate W: volume of carbonate in tube / mass of carbo ater in tube W: same size of (carbonate) particles RE: pressure	in the tube /		
		(ii)	(carbo ALLO\	of decomposition is copper (carbonate) > zinc (cannot cannot cann	nesium carbona	te takes	
			the mo the mo	as reactive (the metal), the faster the rate (of decompore reactive (the metal) the slower the rate (of decompore reactive (the metal) the longer it takes (to decompore reactive (the metal) the longer it takes (to decompore with the most reactive takes the most time ORA	position) /	[2] [Total: 10]	

	Page 10			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – October/November 2010	5070	22
B9	(a)	(i)	IGN	ing fossil fuels / burning named fossil fuel / volcanoes ORE: gases from exhausts / factory chimneys / power composition of fossil fuels		
		(ii)	•	suitable e.g. erosion of buildings / statues (made of carbonate rock IGNORE: erosion of rocks / destroys building / dissolve ALLOW: corrosion of buildings / damages buildings corrosion of metal structures / bridges etc. / ALLOW: erosion of metal structures etc. forest death / crop loss / reduction in plant growth / do NOT: kills plants (in stem of question) / destroys trees soil acidification / leaching from soil	es stones	[1] 'ly
	(b)	(i)	1 ma 1 ma	$O_3(s) + H_2SO_4(aq) \rightarrow CaSO_4(aq) + CO_2(g) + H_2O(I)$ ark for balanced equation ark for correct state symbols (dependent on correct for OW: CaSO_4(s)	mulae)	[2]
		(ii)	(mak fibre wate ALL cata	suitable use e.g. king) paints / (making) dyes / (making) plastics / (mak s / (making) soaps / (making) detergents / cleaning me er processing / removing rust OW: for adjusting pH of the soil / making soil less a lyst / ORE: general chemical used in the lab / dehydrating a	etals / oil refining alkaline / car ba	g / waste
		(iii)	ALL	pletely ionised / completely dissociated; OW: the hydrogen ion is fully ionised / completely ionis ORE: low pH / has more hydrogen ions	ses the hydroger	[1] n ions
	(c)	ALL	_OW:	sulfur (both needed) oxygen and sulfur sulfide ore in place of sulfur		[1]
	(d)	(i)	ALLO ener IGNO ener	alpy change OW: heat change / amount of energy released or abso gy change ORE: exothermic / thermal energy / amount of energ gy absorbed / enthalpy	gy released / ar	nount of
		(ii)		tion goes to left / favours the reactants / reverse readuct decreases; (1)	ction occurs / a	mount of
			•	ause) the reaction is exothermic; (1) OW: goes to the side which is endothermic		[2]
						[Total: 10]