MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Paper
	GCE O LEVEL – October/November 2010	5070	21
A1 (a) (i) D			[1]
(ii) A			[1]
(iii) E			[1]
(iv) B			[1]
(v) F			[1]
(vi) C			[1]
(b) Propar	ol / propan-2-ol (1)		[1]
			[Total: 7]
$\mathbf{A2} (\mathbf{a}) \mathbf{C2} (1)$			
A2 (a) Ga (1) IGNOF	E: lack of atomic and nucleon number		[1]
(b) Ni and			
IGNOF	E: lack of charge		[1]
(c) 23 (1)			[1]
(d) 2,8,8 (²	1)		
ALLOV	./ V: 1s²2s²2p ⁶ 3s²3p ⁶ RE: any charge shown		[1]
101101			[.]
at	gular arrangement of particles in rows (minimum 2 rows least 2 different sized particles arranged in the structure		
	ark independently LOW: either atoms or ions		[2]
	y suitable use e.g. catalyst for margarine manufacture (anufacture of margarine or hydrogenation of alkenes NC		[1]
	yers cannot slide (as easily as with pure iron) (1) cause Ni atoms cause irregularities in lattice / ions of di	ferent size (1)	[2]
			[Total: 9]

Page 3			3 Mark Scheme: Teachers' version	Syllabus	Paper		
		<u> </u>	GCE O LEVEL – October/November 2010	5070	21		
А3	A Io		More carbonyl chloride formed / (reaction) shifts to right (1) ALLOW: favours the forward reaction Idea of moving in direction so that concentration of chlorine i IGNORE: references to rate	is lowered (1)	[2]		
		(ii)	More carbonyl chloride formed / (reaction) shifts to right (1) ALLOW: favours the forward reaction Idea of moving in the direction of the fewer number of molec moving to the side with the smaller volume (1) IGNORE: references to rate	cules or moles	/ idea of [2]		
	(iii)		less carbonyl chloride formed / (reaction) shifts to left (1) ALLOW: favours the backward reaction because the (forward reaction) is exothermic / in the direction of the endothermic reaction (1)				
			IGNORE: references to right		[2]		
	(b)	Cor	$DCl_2 + 4NH_3 \rightarrow (NH_2)_2CO + 2NH_4Cl$ rrect formulae (1)		101		
		Баі	lancing dependent on formulae (1)		[2]		
	(c)	(i)	replace nitrogen lost from soil (when plants harvested) / replace from soil (when plants harvested) / OWTTE / nitrogen construction of the plants harvested) / OWTTE		otein (for		
			increase nutrients is NOT sufficient		[1]		
		(ii)	iron catalyst (1) temperature 450°C (1) ALLOW: from 400–500°C pressure 200 atm (1)				
			ALLOW: from 150–400 atmospheres		[3]		
					[Total: 12]		
A4	(a)	(i)	any two differences				
			e.g. • potassium soft + iron hard (1)				
			 ALLOW: iron is harder potassium low melting point + iron high melting point (1))			
			ALLOW: iron has a higher melting point				
			 potassium not very dense + iron (very) dense (1) ALLOW: iron is more dense 		[2]		
		(ii)	any one difference				
			e.g.variable oxidation states (1)				
			• potassium is more reactive than iron (1)				
			 potassium reacts with cold water + iron does not (1) potassium tarnishes iron does not (1) 				
			 potassium reacts with air at room temperature iron does 	s not (1)	[1]		

Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper			
		GCE O LEVEL – October/November 2010	5070	21			
(b)	C = (C = (OR	e by M _r 10.5/12 O = 10/16 H = 0.75/1 0.875 O = 0.625 H = 0.75 (1) e by lowest					
		1.4 $O = 1.0$ $H = 1.2 (1)$ ment or indication relating above ratios to empirical form multiply each by 5 or divide each by 0.2 or 2 (and × by 10		[3]			
(c)	(i)	$Ag^+ + e^- \rightarrow Ag(1)$		[1]			
	. ,	reduction is addition of electrons / silver <u>ion(s)</u> gains electALLOW: oxidation state of silver changes from 1 to 0 ALLOW: it gains electrons but NOT silver gains electrons		[1]			
(d)	(add	aqueous) sodium hydroxide / (add aqueous) ammonia (1)				
	red brown precipitate (both red brown and ppt needed) (1) dependent on the use of the correct reagent [2]						
				[Total: 10]			
A5 (a)	 (a) Two electrodes dipping into aqueous potassium bromide in beaker and at least one label (1) NOT: copper electrodes or incorrect electrolyte 						
	exte	nal circuit and power source (1)		[2]			
(b)		iquid (around anode) goes brown (1) ALLOW: brown fumes (around anode)		[1]			
		est: lighted splint (1) result: pops / explodes / squeaks (1) result is dependent on correct test		[2]			
	(iii)	$2H^{+} + 2e^{-} \rightarrow H_{2}(1)$		[1]			
		potassium is higher in the discharge series / potassium series (than hydrogen) / potassium is higher (electrochemical series (1)	-	in the			
		ALLOW: potassium is more reactive than hydrogen		[1]			
				[Total: 7]			

	Page 5			Mark Scheme: Teachers' version	Syllabus	Paper 21	
				GCE O LEVEL – October/November 2010 5070			
B 6	(a)	ato	mic n	umber / number of protons (1)		[1]	
	(b)	3 / I	III (1)			[1]	
	(c)	any e.g. • •	grou nobl hydr grou zinc mag old	differences ups are horizontal in old table (1) e gases not present in old table (1) rogen and lithium in same period (or column) (1) ups don't start with Group I (1) appears in same group as magnesium (1) unesium and calcium in same period (in old table) (1) table does not include actinides / does not include nents / old table has more elements (1)	lanthanides / t	ransition [2]	
	(d)	(i)		sition elements (1) OW: d-block		[1]	
		(ii)	incre	easing temperature increases speed of reaction (1)			
			•	icles collide with greater frequency / particles coll cessful collisions / more energetic collisions (1)	ide more often	/ more [2]	
	(e)	(i)	more	e reactive in order Li, Na, K / more reactive down the G	Group (1)	[1]	
		(ii)		+ $2H_2O \rightarrow 2NaOH + H_2$ OW: any correct multiples including fractions		[1]	
		(iii)	any	value between 20–55°C (actual = 39°C) (1)		[1]	
						[Total: 10]	
B7	(a)	any • •	has cons have ALL have phys	from: a general (molecular) formula (1) secutive members differ by CH ₂ (1) e similar or the same chemical properties (1) OW: can be prepared by same or similar methods e same functional group (1) sical properties change in predictable way (1) OW: example of change in physical property		[2]	
	(b)	(i)	C₅H	12 (1)		[1]	
	(~)	(ii)		value between 23–47 (actual = 36° C) (1)		[1]	
		()				r.1	

	Page 6			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE O LEVEL – October/November 2010	5070	21	
	(c)	(i)	enth	alpy change is negative (1)		[1]	
		(ii)	bono but Ener	d breaking is endothermic and bond making exothermi ds and heat given out when bonds form (1) rgy given out when new bonds formed greater tha iking bonds (2)			
		(iii)	•	two from: difference in CH_2 in successive members (1) extra bonds broken are the same each time (1) extra ones made are the same (1)		[2]	
	(d)	field ALL	ds / do _OW:	 / flatulence in animals or as result of bacteria or dige ecomposition in landfill sites (1) melting of permafrost / decay of organic material : natural gas 	stion in animals	/ paddy [1]	
		IGI	NORL				
						[Total: 10]	
B8	(a)	(i)	Giar	nt covalent structures (of atoms) / very long chained mo	blecules (1)	[1]	
		(ii)	e.g.	suitable named or generically named macromolecule (polysaccharides / starch / cellulose / DNA / RNA OW: fats / (large) carbohydrates	1)	[1]	
	(b)	ΝO	T: sul	rated) hydrochloric acid (1) lfuric / nitric acid enzyme protease			
				flux (1) dependent on the correct reagent any value between 20–40°C for an enzyme		[2]	
	(c)	any • •	base spot	from: e of chromatography paper in solvent (1) of amino acids on base line (1) ne solvent run up paper (1)			
			ay wit	th locating agent (1) e R _f values (1)		[4]	
	(d)	(i)	Both	have amide linkage / CONH link or group (1)		[1]	
		(ii)	has	many different side groups / only one carbon betwee more than two monomers (1)	en each amide	-	
			Diffe	erent monomers is NOT sufficient		[1]	
						[Total: 10]	

	Page 7			Mark Scheme: Teachers' version	Paper	
				GCE O LEVEL – October/November 2010 5070		
В9	(a)	corr	correct electronic structure of three bonding pairs and a lone pair (1)			
	(b)		use mas	es phosphorus = 1.86/31 = 0.06 mol of 4:1 ratio so moles phosphine = 0.06/4 = 0.015 mol (s phosphine = 0.015 × 34 = 0.51 g (1) OW: ecf from wrong Mr values	1)	[2]
			/\			[4]
				5 × 24 = 0.36 dm ³ (1) OW: ecf from wrong number of moles		[1]
	(c)	Corr Bala	rect f	$2P + 3H_2$ formulae (1) g dependent on correct formulae (1) equations with correct multiples or P ₄		[2]
	(d)	(i)	PH ₄]	$I + NaOH \rightarrow PH_3 + NaI + H_2O(1)$		[1]
		(ii)	fume	es of phosphine / smell of garlic / gas given off / efferve	escence	[1]
	(e)	(i)	P ^{3–} ((1)		[1]
		• •	-	melting point / high boiling point / conducts electric ts) with water / soluble in water / conducts electricity w	•	lves (or [1]
						[Total: 10]