UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2)	Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – October/November 2009	5070	02
A 1	1 (a) (i)		ethe	ne		[1]
		(ii)	sodi	um iodide		[1]
		(iii)	amm	onium sulfate		[1]
		(iv)	nitro	gen(IV) oxide		[1]
		(v)	calci	um oxide		[1]
		(vi)	calci	um oxide		[1]
	(b)			e containing two (or more) elements / different atoms references to a mixture	combined/ bond	ed/joined [1]
	(c)	IGN NO	ORE T: stro	not move / in fixed position in solid / in lattice; charged particles ong electrostatic forces between ions		[1]
		ions NO	s can T: ion	reference to electrons move in solution / are mobile in solution s free reference to electrons		[1]
						[Total: 9]
A2	(a)	ALL IGN	LOW: NORE	\rightarrow 2C ₂ H ₅ OH + 2CO ₂ C ₂ H ₆ O for ethanol : word equation : state symbols		[1]
	(b)		nenta JECT	tion : fermentation + respiration		[1]
	(c)	incr	eases	creases from 20°C / (at lower temperatures) spe s then decreases / at high(er) temperatures speed o / slower OR stops at high(er) temperatures		•
	(d)		-	dient greater <u>and</u> starts at 0,0; at <u>same</u> final volume		[1] [1]
						[Total: 6]
А3	(a)	nitro	ogen '	79% <u>and</u> oxygen 20%		[1]
	(b)	(i)	num	is of same element / same proton number / same bers of neutrons / nucleons / mass number : atoms with different numbers of neutrons	atomic number	with different [1]
		(ii)	18 e	ectrons and 22 neutrons		[1]

Pa	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE O LEVEL – October/November 2009	5070	02
(c)	(i)	IGN	¹ ₄ + 4Na → Ti + 4NaC <i>l</i> ORE: word equation ORE: state symbols		[1]
	(ii)	ALL	revent the sodium oxidising/ to prevent oxygen reacting OW: air in place of oxygen : argon is unreactive	g with the sodium	[1]
(d)	Xe Xe	= 9.82 = 0.0	correct relative atomic mass; 25/131; O = 1.2/16; F = 5.7/19 75; O = 0.075; F = 0.3 atio from this division;		[1]
	Xe	= 1;	O = 1 ; F = 4		[1]
			ecf from step 1 ormula XeOF₄ (any order)		[1]
					[Total: 8]
A4 (a)	hyd ALI	lroger _OW:	vith water to) produce hydroxide <u>ions</u> / proton acceptor n ion acceptor hydroxide ions produced acts with water unqualified / it is an alkali / pH more tha		[1]
(b)			<u>een precipitate</u> ey precipitate / blue-green precipitate / yellow green pp	t	[1]
(c)			ethylamine = 6.2/31 = 0.2; :: units		[1]
	ALI AC	_OW:	T: 4.8 alone		[1]
(d)	(i)		stance which speeds up a reaction OW: substance which changes the speed / rate of reac	ction	[1]
	(ii)	240 ALLO NOT	g) of methanol → 31 (g) methylamine; kg methanol → 232.5 kg / 232 500 g methylamine; OW: 232.5 / 233		[1] [1]
		or u 240 7500 ALLO NOT NOT	OW: ecf from wrong molar masses sing moles kg methanol = 240 000 / 32 = 7500 mol; mol methanol → 7500 × 31 = 232.5 kg / 232 500 g; OW: 232.5 : 232.5 g : 240 (kg) OW: ecf from wrong molar masses		
					[Total: 7]

	Page 4				Mark S						Sylla	bus	Paper
				GC	E O LEV	'EL – 0	ctober	/Noven	1ber 20	09	507	70	02
A5	(a)	ALLO IGNO)W: i)RE:	$l_2 ightarrow 2 K0$ ionic equ word equ state sy	uation / r quation	nultiples	5						[1]
	(b)	(acidified) potassium dichromate; ALLOW: (acidified) potassium manganate(VII) / potassium permanganate turns green; ALLOW: (for permanganate) turns colourless / decolourises IGNORE: starting colour							[1] [1]				
	(c)				2 to 4 (ad OW 20 -			59)					[1] [1]
	(d)	bromi broke ALLO	ine p en;)W: <u>r</u>	oarticles particles	break fr (or <u>mole</u>	ee from	n each	other /	forces	or bond	s betwee		ave the liquid / line molecules [1]
		diffusi REJE explar e.g. ra collision bromi IGNO	ion / CT: nationations ions ine p DRE:	on of difform mov / particles molecu	an motion fusion in ement o es dispe	volving of f molec erse / pa e from	ules / i articles area o	molecu travel	es mov through	e anyw out the	room / c	olecules onstant	[1] s in (constant) motion of the [1] tion / particles
													[Total: 8]
A6	(a)	ALLO ALLO rays (too m)W: ւ)W: լ nuch	uv for ul protects า) ultra v	traviolet	uv rays	s / prev	vents uv se skin	rays g	jetting t	•		[1] ce / blocks uv [1]
	(b)		RE:	BO ₂ state sy word ed									[1]
	(c)	A A A N th	ALLC ALLC ALLC NOT:	DW: rose DW: ther DW: rose : increas declined	rly 1980's e to 1987 e was ar e to a pea ed until d / lower	OR198 n increas ak in 19 1990	39 / ros se in C 88	e to jus FCs in	t before the 198	0's	or 1989	/ from	[1] the end of the
		1	900	3									[1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2009	5070	02

- (ii) Any 2 sensible suggestions which include relevant dates e.g.:
 - relates drop in amount of ozone between 1980 and 1988 to increase in CFC production;
 - level of ozone from 1998 to 2002 has slightly increased when CFC production had remained low or decreased
 - CFC production dropped significantly from 1988 to 1998 but so did the amount of ozone;
 - level of ozone from 1998 to 2006 has been very variable and no definite correlation with decrease CFC production

[Total: 7]

[4]

[1]

[1]

[2]

B7 (a) ANY 4 of:

power source / battery connected to electrodes dipping in electrolyte;

ALLOW: from diagram

REJECT: wrong electrolyte / carbon electrodes

- anode impure copper and cathode pure copper;
- cathode increases in size / mass <u>and</u> anode decreases in size / mass;
 ALLOW: copper deposits on cathode and removed from anode
- cathode reaction: Cu²⁺ + 2e⁻ → Cu;
 ALLOW: e for electron / -2e on right
- anode reaction: Cu → Cu²⁺ + 2e⁻
 ALLOW: e for electron / –2e on left

NOTE: both equations correct but anode reaction and cathode reaction the wrong way round gains 1 mark only

(b) (i)
$$4OH^- \rightarrow 2H_2O + O_2 + 4e^-$$

ALLOW: $4OH^- - 4e^- \rightarrow 2H_2O + O_2$
ALLOW: multiples

(ii) copper ions in solution not replaced / reduction in amount of copper ions available;

NOT: anode is not copper

NOT: because the copper is being used up

NOT: because copper ions are reduced to copper at the cathode

(c) (i) 1 mark for each catalyst with its correct product:

e.g. iron for making ammonia / ALLOW: iron oxide

nickel for making margarine / hydrogenation of alkenes / making alkanes

vanadium(V) oxide for making sulfur trioxide / sulfuric acid

ALLOW: vanadium oxide NOT: wrong oxidation state

ALLOW: platinum for SO₃ / sulfuric acid / nitric acid

NOT: for Haber process / for Contact process

(ii) any two properties of transition metals other than catalyst e.g.

variable oxidation number OR variable oxidation state OR form more than one sort of ion / variable valency

form coloured compounds or coloured ions

form complex ions ALLOW: high density

ALLOW: high melting or high boiling points

[Total: 10]

[2]

© UCLES 2009

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2009	5070	02

B8 (a) orange / red / brown colour of bromine;

decolorised / goes colourless (when fumaric acid added);

REJECT: becomes discoloured

$$(C_4H_4O_4 + Br_2 \rightarrow) C_4H_4O_4 Br_2 / (HO_2CH = CHCO_2H + Br_2 \rightarrow) -CHBr$$
——CHBr——[1]

ALLOW: from altered diagram

(b) moles sodium hydroxide = $0.018 \times 0.2 = 3.6 \times 10^{-3}$; [1]

moles fumaric acid = $\frac{1}{2}$ answer to first mark; [1]

ALLOW: ecf

concentration of fumaric acid = (1000/60 × answer to second mark) $[(1000/60) \times 1.8 \times 10^{-3}] = 0.03 \text{ mol/ dm}^3$ [1] ALLOW: ecf

OR

$$\frac{C_1V_1}{C_2V_2} = \frac{0.2 \times 18}{C_2 \times 60}$$
 (1 mark for working as shown)

$$\frac{C_1V_1}{C_2V_2} = \frac{n_1}{n_2} \qquad \frac{0.2 \times 18}{C_2 \times 60} = \frac{2}{1} \text{ (2 marks for working as shown)}$$

Correct answer = 3rd mark

[1] (c) polyester

(d) clothing / ropes / fishing lines / fishing nets / stockings / parachutes / toothbrush (bristles) / balloons / guitar strings / racquet strings / petrol tanks [1] **ALLOW: fabrics**

IGNORE: fibres without qualification

- (e) Any two environmental problems e.g.
 - burning causes poisonous or harmful fumes / acidic fumes NOT: references to carbon dioxide / soot / pollution
 - fills up landfill sites / not enough landfill sites / difficulty to store waste
 - litter / just thrown away / eyesore
 - trap animals or birds / harms organisms in sea ALLOW: harms or kills wildlife
 - blocks drains OR streams [2]

[Total: 10]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE O LEVEL – October/November 2009	5070	02	

B9 (a) Any two of:

- carbon dioxide + water (combine);
- to form glucose + oxygen;
- in presence of chlorophyll / sunlight

[2]

ALLOW: information from word equation or symbol equation with correct formulae

- (b) correct dot and cross diagram for carbon dioxide
 - i.e. 4 bonding electrons between carbon and each oxygen and 4 non bonded electrons on each oxygen [1]

IGNORE: inner shell electrons

(c) (i) $C_8H_{18} + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O$ (or multiple of this)

[1]

(ii) <u>carbon dioxide</u> (produced) is a greenhouse gas / <u>carbon dioxide</u> is responsible for global warming

ALLOW: increased <u>carbon dioxide</u> levels lead to stated effect of climate change e.g. melting of polar ice / glaciers / desertification / rise in sea levels etc [1] REJECT: statements about linking global warming / carbon dioxide to ozone layer

(d) (i) amount of bicarbonate decreases / more carbonate forms;

[1]

ALLOW: more water forms / more carbon dioxide forms

ALLOW: concentration of bicarbonate decreases / concentration of carbonate / water / carbon dioxide increases

position of equilibrium moves to the left / reaction moves in the in direction of decreasing concentration / when conditions in equilibrium changed the equilibrium shifts to oppose the change OWTTE;

(ii) any Group I carbonate / ammonium carbonate ACCEPT: hydrogencarbonates / correct formulae [1]

(e) Any 2 of:

- sulfur dioxide in flue gases from burning of fossil fuels / named fossil fuel;
 NOT: removes sulfur dioxide from atmosphere
- sulphur dioxide reacts with calcium carbonate
- to form calcium sulfite (+ carbon dioxide);
- calcium sulfite reacts (with oxygen and water) to form calcium sulfate;
- removal of sulfur dioxide fuels reduces acid rain / reduces sulfur dioxide in atmosphere / sulfur dioxide causes acid rain
- removal of sulfur dioxide reduces <u>named effect</u> of acid rain / sulfur dioxide causes e.g. respiratory difficulties / acidification of lakes / erodes buildings or bridges / kills trees / kills animals or plant in rivers or ponds

NOT: kills plants or animals in seas / kills marine life

[Total: 10]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2009	5070	02

B10(a) haematite / limonite / magnetite / siderite

[1]

- **(b)** Any 3 of:
 - calcium carbonate / limestone decomposes to calcium oxide;
 - calcium oxide reacts with silica / silicon dioxide / sand (in the ore);
 - calcium oxide is basic so reacts with acidic impurities;
 - to form a slag / calcium silicate (this mark consequential on either of the two above);
 - silicates / impurities would clog up the blast furnace if not removed

[3]

- (c) energy needed to break the bonds (in carbon and oxygen) / bond breaking is endothermic; [1] energy released on forming bonds in CO₂ / bond forming is exothermic; [1] more energy involved in bond making than bond breaking / more energy released than absorbed [1]
- (d) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

[1] [1]

 $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$

IGNORE: state symbols IGNORE: word equation

(e) remove (some) carbon / blow oxygen through (the molten iron) / react it with oxygen / use a basic oxygen converter [1]

NOT: use a furnace / use a converter

NOT: adding other metals to form stainless steel / alloys

[Total: 10]