MARK SCHEME for the October/November 2007 question paper

5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Mark Scheme	Syllabus	Paper
			GCE O LEVEL – October/November 2007	5070	02
41	(a)	methane	/CH ₄		I
	(b)	carbon d	lioxide/CO ₂		l
	(c)	ammonia	a/NH ₃		I
	(d)	carbon n	nonoxide/CO		l
	(e)	ammonia	a/NH ₃		l
	(f)	hydrogei	ח/H ₂		l
2	(a)	ALLOW:	um chloride NH₄C <i>l</i> monia chloride		I
	(b)	 evapora diffusio explana molecu NOT: ior hydroge ALLOW: 	the following: ation of hydrogen chloride and ammonia <u>molecules</u> or n OR diffusing/ ation of diffusion e.g. <u>particles/molecules</u> in (constant) <u>les</u> OR <u>particles</u> collide/ ns OR atoms collide/ en chloride heavier (than ammonia) or reverse argume hydrogen chloride denser (than ammonia) or reverse en chloride moves slower than ammonia or reverse ar	movement/ ent/ argument/	otton wool/
	(c)	ALLOW:	methylamine greater (than that of ammonia); methylamine is heavier/denser ammonia is lighter		I
		ALLOW: methylar	methylamine has a similar RMM to hydrochloric acid nine moves slower than ammonia HC//methylamine diffuse/move at similar rates		

ALLOW: HCI/methylamine diffuse/move at similar rates

Ра	ge 3	Mark Scheme GCE O LEVEL – October/November 2007	Syllabus 5070	Paper 02
A3 (a)	4	GCE O LEVEL - October/November 2007	5070	[1
(b)	(i)	Ge _n H _{2n+2}		[1
	(ii)	нн		
	ļ	H H H Ge — Ge — H H H		
				[1]
	(iii)	$Mg_2Ge + 4HCl \rightarrow 2MgCl_2 + GeH_4$		[1]
(c)		cts with (both) acids and bases/alkalis OW: have acidic and basic properties		[1]
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
(d)		(aqueous) sodium hydroxide other soluble hydroxide/am /-green/green precipitate/ppt/solid (both colour and ppt ne		[1] [1]
4 (a)	•	2 of the following: notubes have hexagons (of C atoms) & diamond has tetra	ahedrally arranged	[2] I atoms
	• na othe	notubes – each carbon bonded to 3 other carbons & dianers;	nond – each carbo	on bonded to 4
	tub	notubes have definite size to molecules OR are tubular ular structure notubes have delocalised electrons & diamond has no de		
	• 116			5
(b)	thro	e strong bonds/have 3-dimensional structure of covalent ughout the structure/giant covalent structure/giant		[1]
		OW: strong forces between atoms T: 'have covalent bonds' without further clarification		
(c)	(i)	graphite		[1]
	(ii)	electrons can move/are mobile/are delocalised NOT: has free moving charges		[1]
(d)	(i)	full outer shell (of electrons)/can't gain or lose electrons electrons/has outer octet of electrons	s (easily)/outer sh	ell has 8 [1]
	(ii)			[1]
(e)	anv	two other properties of transition metals e.g.		
(6)	forr	n coloured <u>compounds</u> /variable valencies OR oxidation st n complex ions/high melting or boiling points (either)/high		[2]

	Page 4			Mark Scheme	Syllabus	Paper	
				GCE O LEVEL – October/November 2007	5070	02	
A5	(a)	 a) chromatography; beaker/suitable receptacle with paper dipping into solvent and any two correct labels; paper dipping into solvent with origin line and/or lowest spot above solvent level 					
	(b)	(i)	C ₂ H ₃	₃ O ₃		[1]	
		(ii)	mole conc = 1.5 OR s	es potassium hydroxide = $0.006 \times 0.1 (6 \times 10^{-4})$; es tartaric acid = $\frac{1}{2} \times answer to first mark (3 x 10^{-4})$; centration of tartaric acid = (1000/20) x answer to 2 nd m 5 x 10 ⁻² (mol dm ⁻³) suitable other method e.g. MaVa/n = MbVb/n; 20/1 = 0.1 x 6/2;1.5 x 10 ⁻² (mol dm ⁻³)	nark	[3]	
		(iii)	(7.4/	/8) x 100 = 92.5 (%)		[1]	
A 6	(a)	2KN	1O ₃ –	$\rightarrow 2KNO_2 + O_2$		[1]	
	(b)	ero or p	des b lants	/effect of acid rain or sulphur dioxide gas e.g. uildings/reacts with buildings or statues/forest death/ki /kills fish (in lakes)/acidifies lakes breathing difficulties uses pollution/harmful (unless specified)		[1]	
	(c)			surface area (with smaller particles)/surface area increa	ased;	[2]	
	(d)		•••	eous) barium nitrate/lead nitrate; ecipitate/solid (both white and ppt needed).		[2]	
	(e)	(i)	goes ALL	eous) potassium iodide; s brown/goes red-brown/iodine released OW: other possible examples with correct colour chang iron(II) to iron(III); green to yellow	ge	[2]	
		(ii)	•	of: of electrons/decrease in oxidation number or state/oxi s from 5 to –1/loss of oxygen (from chlorate)	idation state	[1]	

	Page 5			Mark Scheme					Syllabus		Paper	
				GCE O LEVEL – October/November 2007					5070		02	
B7	(a)	carbon monoxide converted to nitrogen dioxide/other name nit by reaction with carbon monoxi (for all three individual marks A				ame nitre monoxic	ogen oxio de/hydroc	de(s) con arbons	verted to ni	trogen;	en if	[3] equation)
	(b)	C7⊦	I ₁₆ + ′	110 ₂ →	• 7CO ₂	+ 8H ₂ O						[1]
	(c)	(Ni ÷ ai (Ni	+ by correct atomic masses Ni = $1.97/59$ C = $1.6/12$ O = $2.13/16$ (Ni = 0.0334 C = 0.133 O = 0.133); + answer to first calculations by smallest number (0.0334); (Ni = 1 C = 4 O = 4); correct formula Ni(CO) ₄								[3]	
				NiC ₄ O ₄								[0]
	(d)	(i)		•			• •	•	of) reaction			[1]
									nds (betwee H ₂ /H can be	en carbon atom added	າຣ)	[1]
		(ii)	hydr	ogen/H ₂	2							[1]
B 8	(a)					• •	tly ionised gen ions	d/partly d	issociated/r	not fully ionised		[1]
	(b)	2C ₂	H₅CC	0₂H + Na	a ₂ CO ₃ -	$\rightarrow 2C_2 \vdash$	l₅CO₂Na	+ CO ₂ +	H ₂ O			[1]
	(c)	(i)	so 4 so a OR 74g so 3 so a OR Mol 2x m Mg = OR 0.40 Any • ma • use • cor	.8g mag cid (30g of propa 0g of ac cid in ex Mg = 4.8 acid = 3 acid = 3 acid = 3 foles of = 0.4 x 7 5/2 mole two of rk for bo e of mole rect unc	(nesium) in exc anoic ac id requi (cess (a 8/24 = 0 0/74 = 0 0/74 = 0 acid rec 24 = 29.0 es = 0.2 oth mola es i.e. 4 derstanc	requires ess id will no res 4.86 s only 4 0.2 0.405(4) guired to 6g comp 027/0.2 ar masse .8/24 or ding of th	s 29.6g a eed ½ x 2 5g Mg 8g Mg u //0.41 mo o 1 mole N oared with 03 moles es i.e. 24 30/74 he 1:2 mo	acid 24g of Mg sed) I; Mg n 30 g ac acid con and 74 /	id npared with	0.2 moles Mg		[2]
		(ii)	0.2 r	nol H ₂ (a	allow ec	f from p			,			[2] [1] [1]

	Page 6			Mark Scheme	Syllabus	Paper		
				GCE O LEVEL – October/November 2007	5070	02		
	(d)	(i)		hols and carboxylic acids are monomers (both required OW: alkanoic acids/OH and COOH or CO_2H	d);	[1]		
		(ii)	cond	densation		[1]		
		(iii)	cloth	ning/named clothing/sails/conveyor or fan belts/		[1]		
	(e)	 e) one from: landfill – doesn't (bio)degrade/ incineration/burning – <u>harmful</u> substances/harmful fumes/harmful gases produce ALLOW: stated harmful gas with correct effect e.g. hydrogen chloride acid rain/ carbon dioxide global warming etc. recycling – difficult to sort out different polymers ALLOW: expensive/time consuming 						
B9	(a)	 (a) Any 2 from: hydrogen can be obtained from a renewable resource or water/ produces <u>only</u> water as a product/no carbon monoxide produced ALLOW: non-polluting/less polluting larger amount of energy released per g or unit mass; less dense/lighter/lower mass (as liquid compared with petrol) 						
	(b)	flan be s	age is expensive	OR needs to [1]				
	(c)	(i)	NOT	ation because loss of electrons ⁻ : redox/OH [−] loses electrons OW: <u>hydrogen/H₂ increases oxidation number/gains ox</u>	kygen	[1]		
		(ii)	O ₂ +	$2H_2O + 4e^- \rightarrow 4OH^-$		[1]		
	(d)	(i)	2H ₂	+ $O_2 \rightarrow 2H_2O$		[1]		
		(ii)	hydr	ochloric acid/sulphuric acid (or formulae)		[1]		
	(e)	(i)	argu Mg I	nesium is more reactive/higher in the reactivity serie ment; loses OR gives off electrons more readily than copp ace of Mg/electrons flow from more reactive to less rea	er/electron dens			
		(ii)	copp	nesium would react with it/the metals would react with ber would react with it/a precipitate of silver would be fo OW: silver nitrate is very expensive/lower conductivity		[1]		

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	5070	02

B10(a) any 2 of:

• silicate has regular arrangement of atoms and soda-lime glass has irregular arrangement; ALLOW: e.g. soda lime glass has a less regular arrangement of atoms ORA

• silicate has no ions/named ion(s)/all atoms (covalently) bonded and soda lime glass has calcium/sodium ions; [ALLOW: has oxygen ions]

• all the oxygen atoms are (covalently) bonded to two silicon atoms in silicate but in soda lime some are only bonded by one (covalent) bond;

• silicate has larger spaces/an open structure and soda-lime glass has a more compact structure/collapsed structure [2]

- (b) Ca²⁺/Na⁺ ions can move ALLOW: ions can move/ions are free to move NOT: ions are delocalised/ions are free
- (c) $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
- (d) (i) hydroxide/OH⁻

[1]

[3]

[1]

[1]

(ii) Pb²⁺ + 2OH⁻ → Pb(OH)₂ (complete balanced equation = 2 marks) [2] lead hydroxide formed/lead hydroxide is white/hydroxide ions react with the lead or unbalanced equation = 1 mark

 (e) gas syringe OR inverted measuring cylinder full of water attached to flask; ALLOW: drawing of apparatus as long as closed system/other suitable apparatus measure volume of gas/carbon dioxide; (gas) measured at various time intervals/take readings of clock every so often; NOT: use a stop clock without any qualification of how it is used OR use (sensitive) balance/top pan balance; record mass; at various time intervals;