## MARK SCHEME for the May/June 2013 series

## **5070 CHEMISTRY**

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| P     | age 2       | 2                | Mark Scheme                                                                                                                                            | Syllabus           | Paper         |      |
|-------|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|------|
|       |             |                  | GCE O LEVEL – May/June 2013                                                                                                                            | 5070               | 21            |      |
| A1 (a | ) Iroi      | n(II) h          | ydroxide (1)                                                                                                                                           |                    |               | [^   |
| (b    | ) But       | tane (           | 1)                                                                                                                                                     |                    |               | [1   |
| (c    | ) Pro       | pene             | (1)                                                                                                                                                    |                    |               | [1   |
| (d    | l) Ca       | lcium            | carbonate (1)                                                                                                                                          |                    |               | [1   |
| (e    | ) Sul       | lfur dio         | oxide (1)                                                                                                                                              |                    |               | [1   |
| (f)   | ) Sul       | lfuric a         | acid / sodium chloride (1)                                                                                                                             |                    |               | [1   |
|       |             |                  |                                                                                                                                                        |                    | [Total        | I: 6 |
| \2 (a | ) Ang       | y valu           | e in range 20–22 (1)                                                                                                                                   |                    |               | [1   |
| (b    | <b>)</b> 6H | <sub>2</sub> 0 + | $6CO_2 \rightarrow C_6H_{12}O_6 + 6O_2(1)$                                                                                                             |                    |               | [1   |
| (c    |             |                  | O FROM<br>nzymes (1)                                                                                                                                   |                    |               |      |
|       | Ch          | loroph           | yll / presence of chloroplasts (1)                                                                                                                     |                    |               |      |
|       | Su          | nlight           | (1) IGNORE just light / sun / sunshine                                                                                                                 |                    |               |      |
|       | (Ide        | eally)           | 20–40 °C (1)                                                                                                                                           |                    |               | [2   |
| (d    | l) (i)      |                  | d breaking absorbs energy <b>and</b> bond making releas<br>othermic <b>and</b> bond making is exothermic (1)                                           | ses energy / bonc  | l breaking is |      |
|       |             | endo             | e energy absorbed than released / less energy<br>othermic energy change is greater than exothermic<br>gy change is less than endothermic energy change | energy change      |               | [2   |
|       | (ii)        | Prod             | lucts level above and to the right of the reactants lev                                                                                                | vel (1)            |               |      |
|       |             |                  | ect energy hump drawn and near vertical arrow la<br>rom reactant level to energy maximum (1)                                                           | abelled activatior | n energy (or  |      |
|       |             | Corr             | ect labelled enthalpy change with near vertical arrow                                                                                                  | w pointing upwar   | ds (1)        | [3   |
|       |             |                  |                                                                                                                                                        |                    | [Total        | l: 9 |

|    | Ра  | ge 3                | Mark Scheme                                                                                                                                                                                                   | Syllabus           | Paper              |
|----|-----|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
|    |     |                     | GCE O LEVEL – May/June 2013                                                                                                                                                                                   | 5070               | 21                 |
| A3 | (a) | (i) 2KC             | $DH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O(1)$                                                                                                                                                                 |                    | [1]                |
|    |     | (ii) 24 d           | cm <sup>3</sup> (of potassium hydroxide neutralises acid) (1)                                                                                                                                                 |                    | [1]                |
|    |     | Mol                 | es of KOH = $\frac{24}{1000} \times 0.150 / 0.0036$ (1)<br>es of H <sub>2</sub> SO <sub>4</sub> = $\frac{0.0036}{2} / 0.0018$ (1)<br>ecentration = $\frac{0.0018}{0.025}$ = 0.072 (mol dm <sup>-3</sup> ) (1) |                    | [3]                |
|    |     | 001                 | 1000000000000000000000000000000000000                                                                                                                                                                         |                    | [3]                |
|    | (b) |                     | itric acid (1)<br>e <b>ess</b> base to acid (and warm) (1)                                                                                                                                                    |                    |                    |
|    |     | Filter (to          | remove excess base) (1)                                                                                                                                                                                       |                    |                    |
|    |     | Evapora<br>cool (1) | te to point of crystallisation / leave in warm place                                                                                                                                                          | / heat then allow  | solution to<br>[4] |
|    |     |                     |                                                                                                                                                                                                               |                    | [Total: 9]         |
| Α4 | (a) | 40 (1)              |                                                                                                                                                                                                               |                    | [1]                |
|    | (b) | Same n              | umber of protons and electrons / because it has 12 p                                                                                                                                                          | protons and 12 ele | ectrons (1)        |
|    |     | Protons             | are positive and electrons are negative / protons are                                                                                                                                                         | e +1 and electrons | s are –1 (1) [2]   |
|    | (c) | C and D             |                                                                                                                                                                                                               |                    | [1]                |
|    | (d) | 2- / -2 (           | 1)                                                                                                                                                                                                            |                    | [1]                |
|    | (e) | F and G             | (1)                                                                                                                                                                                                           |                    | [1]                |
|    |     |                     |                                                                                                                                                                                                               |                    | [Total: 6]         |

| Page 4 | Mark Scheme                 | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
|        | GCE O LEVEL – May/June 2013 | 5070     | 21    |

## A5 (a)

|                     | Ν                        | н                      | Cr                       | 0                      |
|---------------------|--------------------------|------------------------|--------------------------|------------------------|
| Mole ratio          | 11.1<br>14               | $\frac{3.2}{1}$ /      | <u>41.3</u> /            | <u>44.4</u> /          |
|                     | 0.793                    | 3.2                    | 0.794                    | 2.78                   |
| Simplified<br>ratio | 0.793<br>0.793<br>/<br>1 | 3.2<br>0.793<br>/<br>4 | 0.794<br>0.793<br>/<br>1 | 2.78<br>0.793 /<br>3.5 |
| ×2                  | 2                        | 8                      | 2                        | 7                      |

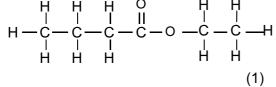
Mole ratio line (1) Simplified ratio line (1) Idea of the  $\times$  2 (1)

[3]

[1]

- **(b)** Chromium (1)
- (c) X is an oxidising agent (1)

because oxidation number of iodine increases / iodide loses electrons / X gains electrons / oxidation number of Cr decreases (1) [2]


- (d) (i)  $NH_4^+(1)$  [1]
  - (ii)  $\operatorname{Cr}_2 \operatorname{O}_7^{2-}(1)$  [1]
- (e) Nitrogen (1)

[1]

[Total: 9]

|            | Pa  | ge 5              | Mark Scheme                                                                                                       | Syllabus                 | Paper             |
|------------|-----|-------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|
|            |     |                   | GCE O LEVEL – May/June 2013                                                                                       | 5070                     | 21                |
| <b>A</b> 6 | (a) |                   | Correct 'dot-and-cross' diagram with one pair of b<br>C <i>l</i> , four non-bonding electrons on O and six non-bo |                          |                   |
|            |     | • •               | ANY TWO FROM<br>Simple molecular structure / small molecule (1)                                                   |                          |                   |
|            |     | ۷                 | Neak intermolecular forces have to be broken (1)                                                                  |                          |                   |
|            |     |                   | Little energy needed to break intermolecular force overcome (1)                                                   | e / intermolecular force | is easy to<br>[2] |
|            | (b) | K⁺ 2,8            | 8,8 (1)                                                                                                           |                          |                   |
|            |     | 0 <sup>2-</sup> 2 | 2,8 (1)                                                                                                           |                          |                   |
|            |     | Alter             | natively                                                                                                          |                          |                   |
|            |     | ALLC              | <b>DW</b> correct charge on ion (1) and correct electronic                                                        | c structure (1)          | [2]               |
|            |     |                   |                                                                                                                   |                          | <b>541</b>        |
|            | (C) | H <sub>2</sub> O  | + $Cl_2O_7 \rightarrow 2HClO_4(1)$                                                                                |                          | [1]               |
|            |     |                   |                                                                                                                   |                          | [Total: 6]        |
| B7         | (a) |                   | TWO FROM<br>blves (1)                                                                                             |                          |                   |
|            |     | Blue              | / green solution (1)                                                                                              |                          |                   |
|            |     | Fizze             | es / bubbles / effervescence (1)                                                                                  |                          | [2]               |
|            | (b) | CuC               | $O_3$ .Cu(OH) <sub>2</sub> + 4HC $l$ → 2CuC $l_2$ + CO <sub>2</sub> + 3H <sub>2</sub> O (1)                       |                          |                   |
|            |     | Corre             | ect formulae (1)                                                                                                  |                          |                   |
|            |     | Balar             | ncing (1)                                                                                                         |                          | [2]               |
|            | (c) | Mole              | $c of CO_1 / moloc of CO_2^2 = 0.004 (1)$                                                                         |                          |                   |
|            | (0) |                   | s of CO <sub>2</sub> / moles of CO <sub>3</sub> <sup>2-</sup> = 0.004 (1)                                         |                          |                   |
|            |     |                   | $CO_3^{2-} = 60 (1)$                                                                                              |                          |                   |
|            |     | Mass              | s of $CO_3^{2-} = 0.24 \text{ g}(1)$                                                                              |                          | [3]               |

| Р     | Page                     | 6                   | Mark Scheme        |                    |        |       |        |        | S      | Syllabus       |         | Pa     | per                |         |           |             |
|-------|--------------------------|---------------------|--------------------|--------------------|--------|-------|--------|--------|--------|----------------|---------|--------|--------------------|---------|-----------|-------------|
|       |                          |                     |                    | GC                 | EOL    | EVE   | L –    | May    | /June  | e 2013         |         |        | 5070               |         | 2         | !1          |
| (d    | l) (i)                   | CuC                 | 03.Cl              | I(OH) <sub>2</sub> | + C -  | → 2C  | u + :  | 2CO    | 2 + H  | <sub>2</sub> O |         |        |                    |         |           |             |
|       |                          | Corr                | ect fo             | rmulae             | e (1)  |       |        |        |        |                |         |        |                    |         |           |             |
|       |                          | Bala                | incing             | (1)                |        |       |        |        |        |                |         |        |                    |         |           | [2]         |
|       | (ii)                     |                     |                    | FROM               |        | ecyc  | ling t | han    | in ex  | tracting       | from t  | he ore | ) (1)              |         |           |             |
|       |                          |                     | •                  | ollutio<br>less la |        |       |        |        |        | duces          | trash / | less   | of an e            | eyeso   | re / not  | t an        |
|       |                          | •                   | s mini<br>culture  | • /                | ves n  | nore  | lanc   | d for  | othe   | er uses        | / (less | minin  | g) save            | es lar  | nd for n  | nore<br>[1] |
|       |                          |                     |                    |                    |        |       |        |        |        |                |         |        |                    |         | [Т        | otal: 10]   |
| B8 (a | <b>i)</b> Gr             | oup of              | subs               | tances             | with   | a gei | nera   | l forn | nula / | / formu        | ae var  | y by C | H <sub>2</sub> (1) |         |           |             |
|       |                          | ive sir<br>oup (1   |                    | eactio             | ns / I | have  | sim    | ilar ( | chem   | nical pr       | opertie | s / ha | ve the             | same    | e functio | onal<br>[2] |
| (b    | <b>)</b> Pro             | opano               | ic acio            | l (1)              |        |       |        |        |        |                |         |        |                    |         |           | [1]         |
| (c    | <b>:)</b> C <sub>n</sub> | H <sub>2n+1</sub> C | O <sub>2</sub> H / | $C_nH_{2n}$        | +1CO(  | ) НС  | 1)     |        |        |                |         |        |                    |         |           | [1]         |
| (d    |                          | • •                 |                    | loes n<br>boiling  |        |       |        |        |        | • •            | nt doe  | s / me | lting po           | oint in | crease    | and<br>[1]  |
| (e    | e) Eth                   | ny <b>l</b> but     | anoat              | e (1)              |        |       |        |        |        |                |         |        |                    |         |           |             |
|       |                          | H<br>I              | H<br>I             | H<br>I             | 0<br>  | _     | H      | H      |        |                |         |        |                    |         |           |             |



[2]

(f) (i)  $C_{15}H_{31}COOH \Rightarrow C_{15}H_{31}COO^{-} + H^{+}(1)$ 

Only partially dissociates / forms an equilibrium mixture / does not completely ionise (1) [2]

(ii) C<sub>15</sub>H<sub>31</sub>COONa (1) [1]

[Total: 10]

|     | Pa   | ige 7                                                                                                                      | ·                                      | Mark Scheme                                                                                                                                                     | Syllabus            | Paper              |  |  |  |  |
|-----|------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|--|--|--|--|
|     |      |                                                                                                                            |                                        | GCE O LEVEL – May/June 2013                                                                                                                                     | 5070                | 21                 |  |  |  |  |
| В9  | (a)  | (i)                                                                                                                        |                                        | ction is faster because particles are moving faste<br>icles have more energy (1)                                                                                | er / rate increase  | es because         |  |  |  |  |
|     |      |                                                                                                                            | activ                                  | re are more successful collisions / more particle<br>vation energy / more effective collisions / more fruitfe<br>sions more chance of successful collisions (1) |                     |                    |  |  |  |  |
|     |      | (ii)                                                                                                                       | Posi                                   | ition of equilibrium shifts to the left (1)                                                                                                                     |                     |                    |  |  |  |  |
|     |      |                                                                                                                            | Because the reaction is exothermic (1) |                                                                                                                                                                 |                     |                    |  |  |  |  |
|     | (b)  | (i) Reaction is slower because the particles are further apart / rate decreases because the particles are less crowded (1) |                                        |                                                                                                                                                                 |                     |                    |  |  |  |  |
|     |      |                                                                                                                            | Few<br>(1)                             | er collisions per second / particles collide less ofte                                                                                                          | n / lower collisior | n frequency<br>[2] |  |  |  |  |
|     |      | (ii)                                                                                                                       | Posi                                   | ition of equilibrium shifts to the left (1)                                                                                                                     |                     |                    |  |  |  |  |
|     |      |                                                                                                                            | More                                   | e moles on the reactant side / fewer moles on the pr                                                                                                            | oduct side (1)      | [2]                |  |  |  |  |
|     | (c)  | 450                                                                                                                        | ) kJ (1                                | 1)                                                                                                                                                              |                     | [1]                |  |  |  |  |
|     | (d)  | Lov                                                                                                                        | vers t                                 | he activation energy / gives (alternative) route with le                                                                                                        | ower energy (1)     | [1]                |  |  |  |  |
|     |      |                                                                                                                            |                                        |                                                                                                                                                                 |                     | [Total: 10]        |  |  |  |  |
| B10 | )(a) | (i)                                                                                                                        | Ag⁺                                    | + e <sup>-</sup> → Ag (1)                                                                                                                                       |                     | [1]                |  |  |  |  |
|     |      | (ii)                                                                                                                       | Elec                                   | ctrons are gained (1)                                                                                                                                           |                     | [1]                |  |  |  |  |
|     | (b)  | Ter                                                                                                                        | npera                                  | ature does not change the mass (1)                                                                                                                              |                     |                    |  |  |  |  |
|     |      | Ма                                                                                                                         | ss is p                                | proportional to the time / doubling time doubles mas                                                                                                            | s (1)               |                    |  |  |  |  |
|     |      | Ма                                                                                                                         | ss is p                                | proportional to the current / doubling current doubles                                                                                                          | s mass (1)          |                    |  |  |  |  |
|     |      | Concentration does not change the mass (1)                                                                                 |                                        |                                                                                                                                                                 |                     |                    |  |  |  |  |
|     | (c)  | lon                                                                                                                        | s can                                  | not move in a solid / ions are in a fixed position in a                                                                                                         | solid (1)           |                    |  |  |  |  |
|     |      | lons can move in a solution (1) [2                                                                                         |                                        |                                                                                                                                                                 |                     |                    |  |  |  |  |

| Page 8 | Mark Scheme                 | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
|        | GCE O LEVEL – May/June 2013 | 5070     | 21    |
|        |                             | •        | •     |

(d) Ag<sup>+</sup>(aq) + Cl<sup>-</sup>(aq) → AgCl(s)
Correct formulae and balancing (1)
Correct state symbols – dependent on correct formulae (1)

[2]

[Total: 10]