MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/32

Paper 3 (Practical Test), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

1 (a) Titration Accuracy 8 marks For the two best titres give: 4 marks for a value within 0.2 cm ³ of Supervisor 2 marks for a value within 0.4 cm ³ of Supervisor 2 marks for a value within 0.4 cm ³ of Supervisor Concordance 3 marks Give: 3 marks if all the ticked values are within 0.2 cm ³ 1 mark if all the ticked values are within 0.3 cm ³ 1 mark if all the ticked values are within 0.4 cm ³ Average 1 mark Give 1 mark if the candidate calculates a correct average (error not greater than 0.05) of his ticked values. Assuming a 25 cm ³ pipette and a titre of 24.8 cm ³ . (b) concentration of ethanedioic acid in P $= \frac{25.0 \times 0.15}{24.8 \times 2}$ (1) $= 0.0756$ (1) Answers should be correct to + or - 1 in the third significant figure. (c) concentration of ethanedioic acid in P in g/dm ³ $= 0.0756 \times 90$ (1) $= 6.80$ (d) mass of water in g $= 9.45 - 6.80$ (1)	ge 2	Mark Scheme: Teachers' versi		Paper
Accuracy8 marksFor the two best titres give: 4 marks for a value within 0.2 cm³ of Supervisor 2 marks for a value within 0.4 cm³ of SupervisorConcordance3 marksGive: 3 marks if all the ticked values are within 0.2 cm³ 2 marks if all the ticked values are within 0.3 cm³ 1 mark if all the ticked values are within 0.4 cm³Averace1 markGive 1 mark if the candidate calculates a correct average (error not greater than 0.05) of his ticked values.Assuming a 25 cm³ pipette and a titre of 24.8 cm³.(b) concentration of ethanedioic acid in P $= \frac{25.0 \times 0.15}{24.8 \times 2}$ (1) $= 0.0756$ (1) Answers should be correct to + or - 1 in the third significant figure.(c) concentration of ethanedioic acid in P in g/dm³ $= 0.0756 \times 90$ (1) $= 6.80$ (d) mass of water in g $= 9.45 - 6.80$ (1)		GCE O LEVEL – May/June 201	2 5070	32
For the two best titres give: 4 marks for a value within 0.2 cm ³ of Supervisor 2 marks for a value within 0.4 cm ³ of Supervisor <u>Concordance</u> 3 marks Give: 3 marks if all the ticked values are within 0.2 cm ³ 2 marks if all the ticked values are within 0.3 cm ³ 1 mark if all the ticked values are within 0.4 cm ³ <u>Average</u> 1 mark Give 1 mark if the candidate calculates a correct average (error not greater than 0.05) of his ticked values. Assuming a 25 cm ³ pipette and a titre of 24.8 cm ³ . (b) concentration of ethanedioic acid in P $= \frac{25.0 \times 0.15}{24.8 \times 2}$ (1) = 0.0756 (1) Answers should be correct to + or – 1 in the third significant figure. (c) concentration of ethanedioic acid in P in g/dm ³ $= 0.0756 \times 90$ (1) = 6.80 (d) mass of water in g = 9.45 - 6.80 (1)	Titration			[12
4 marks for a value within 0.2 cm ³ of Supervisor 2 marks for a value within 0.3 cm ³ of Supervisor 1 mark for a value within 0.4 cm ³ of Supervisor <u>Concordance</u> 3 marks Give: 3 marks if all the ticked values are within 0.2 cm ³ 2 marks if all the ticked values are within 0.3 cm ³ 1 mark if all the ticked values are within 0.4 cm ³ <u>Average</u> 1 mark Give 1 mark if the candidate calculates a correct average (error not greater than 0.05) of his ticked values. Assuming a 25 cm ³ pipette and a titre of 24.8 cm ³ . (b) concentration of ethanedioic acid in P $= \frac{25.0 \times 0.15}{24.8 \times 2}$ (1) = 0.0756 (1) Answers should be correct to + or – 1 in the third significant figure. (c) concentration of ethanedioic acid in P in g/dm ³ = 0.0756 × 90 (1) = 6.80 (d) mass of water in g = 9.45 - 6.80 (1)	Accuracy	<u>v</u> 8 marks		
Give: 3 marks if all the ticked values are within 0.2 cm ³ 2 marks if all the ticked values are within 0.3 cm ³ 1 mark if all the ticked values are within 0.4 cm ³ <u>Average</u> 1 mark Give 1 mark if the candidate calculates a correct average (error not greater than 0.05) of his ticked values. Assuming a 25 cm ³ pipette and a titre of 24.8 cm ³ . (b) concentration of ethanedioic acid in P $= \frac{25.0 \times 0.15}{24.8 \times 2}$ (1) = 0.0756 (1) Answers should be correct to + or - 1 in the third significant figure. (c) concentration of ethanedioic acid in P in g/dm ³ $= 0.0756 \times 90$ (1) = 6.80 (d) mass of water in g = 9.45 - 6.80 (1)	4 ma 2 ma	arks for a value within 0.2 cm ³ of Supervis arks for a value within 0.3 cm ³ of Supervis	sor	
3 marks if all the ticked values are within 0.2 cm^3 2 marks if all the ticked values are within 0.3 cm^3 1 mark if all the ticked values are within 0.4 cm^3 Average 1 mark Give 1 mark if the candidate calculates a correct average (error not greater than 0.05) of his ticked values. Assuming a 25 cm ³ pipette and a titre of 24.8 cm ³ . (b) concentration of ethanedioic acid in P $= \frac{25.0 \times 0.15}{24.8 \times 2} (1)$ $= 0.0756 (1)$ Answers should be correct to + or - 1 in the third significant figure. (c) concentration of ethanedioic acid in P in g/dm ³ $= 0.0756 \times 90 (1)$ $= 6.80$ (d) mass of water in g = 9.45 - 6.80 (1)	<u>Concord</u>	ance 3 marks		
Give 1 mark if the candidate calculates a correct average (error not greater than 0.05) of his ticked values. Assuming a 25 cm ³ pipette and a titre of 24.8 cm ³ . (b) concentration of ethanedioic acid in P $= \frac{25.0 \times 0.15}{24.8 \times 2} (1)$ $= 0.0756 (1)$ Answers should be correct to + or - 1 in the third significant figure. (c) concentration of ethanedioic acid in P in g/dm ³ $= 0.0756 \times 90 (1)$ $= 6.80$ (d) mass of water in g = 9.45 - 6.80 (1)	3 ma 2 ma	arks if all the ticked values are within 0.3	cm ³	
his ticked values. Assuming a 25 cm ³ pipette and a titre of 24.8 cm ³ . (b) concentration of ethanedioic acid in P $= \frac{25.0 \times 0.15}{24.8 \times 2} (1)$ $= 0.0756 (1)$ Answers should be correct to + or - 1 in the third significant figure. (c) concentration of ethanedioic acid in P in g/dm ³ $= 0.0756 \times 90 (1)$ $= 6.80$ (d) mass of water in g = 9.45 - 6.80 (1)	<u>Average</u>	1 mark		
(b) concentration of ethanedioic acid in P $= \frac{25.0 \times 0.15}{24.8 \times 2} (1)$ $= 0.0756 (1)$ Answers should be correct to + or - 1 in the third significant figure. (c) concentration of ethanedioic acid in P in g/dm ³ $= 0.0756 \times 90 (1)$ $= 6.80$ (d) mass of water in g = 9.45 - 6.80 (1)			average (error not greater	than 0.05) of al
$= \frac{25.0 \times 0.15}{24.8 \times 2} (1)$ $= 0.0756 (1)$ Answers should be correct to + or - 1 in the third significant figure. (c) concentration of ethanedioic acid in P in g/dm ³ $= 0.0756 \times 90 (1)$ $= 6.80$ (d) mass of water in g = 9.45 - 6.80 (1)	suming a 2	25 cm ³ pipette and a titre of 24.8 cm ³ .		
= 0.0756 (1) Answers should be correct to + or - 1 in the third significant figure. (c) concentration of ethanedioic acid in P in g/dm ³ = $0.0756 \times 90 (1)$ = 6.80 (d) mass of water in g = $9.45 - 6.80 (1)$	concentr	ation of ethanedioic acid in P		[2
Answers should be correct to + or – 1 in the third significant figure. (c) concentration of ethanedioic acid in P in g/dm ³ = $0.0756 \times 90 (1)$ = 6.80 (d) mass of water in g = $9.45 - 6.80 (1)$	$=\frac{25.0\times0}{24.8}$).15 ×2 (1)		
(c) concentration of ethanedioic acid in P in g/dm ³ = $0.0756 \times 90 (1)$ = 6.80 (d) mass of water in g = $9.45 - 6.80 (1)$	= 0.0756	(1)		
= $0.0756 \times 90(1)$ = 6.80 (d) mass of water in g = $9.45 - 6.80(1)$	Answers	should be correct to + or – 1 in the third	significant figure.	
= 6.80 (d) mass of water in g = $9.45 - 6.80(1)$	concentr	ation of ethanedioic acid in P in g/dm 3		[1
(d) mass of water in g = 9.45 - 6.80 (1)	= 0.0756	× 90 (1)		
= 9.45 - 6.80 (1)	= 6.80			
	mass of	water in g		[1
- 2.65	= 9.45 -	6.80 (1)		
- 2.65	= 2.65			
		Titration Accuracy For the tw 4 ma 2 ma 1 ma Concorda Give: 3 ma 2 ma 1 ma Average Give 1 m his ticked suming a 2 concentra = $\frac{25.0 \times 0}{24.8}$ = 0.0756 Answers concentra = 0.0756 answers = 0.0756 answers = 0.0756 = 6.80 mass of w = 9.45 - 1	GCE O LEVEL – May/June 201TitrationAccuracy8 marksFor the two best titres give: 4 marks for a value within 0.2 cm³ of Supervise 2 marks for a value within 0.3 cm³ of Supervise 1 mark for a value within 0.4 cm³ of SuperviseConcordance3 marksGive: 3 marks if all the ticked values are within 0.2 c 2 marks if all the ticked values are within 0.3 cm³ 1 mark if all the ticked values are within 0.4 cm³Average1 markGive 1 mark if all the ticked values are within 0.4 cm³ 1 mark if all the ticked values are within 0.4 cm³ 1 mark if all the ticked values are within 0.4 cm³ 2 marks if all the ticked values are within 0.4 cm³ 1 mark if the candidate calculates a correct his ticked values.suming a 25 cm³ pipette and a titre of 24.8 cm³. concentration of ethanedioic acid in P = $\frac{25.0 \times 0.15}{24.8 \times 2}$ (1) = 0.0756 (1)Answers should be correct to + or – 1 in the third concentration of ethanedioic acid in P in g/dm³ = 0.0756 × 90 (1) = 6.80mass of water in g = 9.45 – 6.80 (1)	GCE O LEVEL – May/June 2012 5070 Titration Accuracy 8 marks For the two best titres give: 4 marks for a value within $0.2 cm^3$ of Supervisor 2 marks for a value within $0.2 cm^3$ of Supervisor 2 marks for a value within $0.4 cm^3$ of Supervisor 1 mark for a value within $0.4 cm^3$ of Supervisor 2 marks if all the ticked values are within $0.2 cm^3$ 2 marks Give: 3 marks 3 marks if all the ticked values are within $0.2 cm^3$ 2 marks if all the ticked values are within $0.3 cm^3$ 1 mark if all the ticked values are within $0.4 cm^3$ Average 1 mark Give 1 mark if the candidate calculates a correct average (error not greater his ticked values. suming a 25 cm ³ pipette and a titre of 24.8 cm ³ . concentration of ethanedioic acid in P = $\frac{25.0 \times 0.15}{24.8 \times 2}$ (1) = 0.0756 (1) Answers should be correct to + or – 1 in the third significant figure. concentration of ethanedioic acid in P in g/dm ³ = 0.0756 × 90 (1) = 6.80 mass of water in g = 9.45 – 6.80 (1)

GCE O LEVEL – Mav/June 2012 5070 32	Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE O LEVEL – May/June 2012	5070	32

(e) the value of x

mole H₂O =
$$\frac{2.65}{18}$$

= 0.147
 $\mathbf{x} = \frac{0.147}{0.0756}$

= 1.94 or 2

Shows the working to obtain value of **x** (1)

The value of **x**

i.e. the correct arithmetical answer or the nearest whole number (1)

[Total: 18]

[2]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2012	5070	32

2 R is potassium iodide

```
S is hydrogen peroxide
```

Test		Notes				
For ppt	General points For ppt Allow solid, suspension, powder					
	es f gas requires test to be at least partially co cces = bubbles = gas vigorously evolved bu					
Solution Colourle	ess not equivalent to clear, clear not equiva	ent to colourless				
Solution	R					
Test 1						
(a)	yellow ppt (1)	accept pale yellow				
(b)	insoluble in acid (1)					
Test 2						
red/brow	vn solution (1)					
Test 3						
(a)	turns brown (1)	accept black				
	solid formed (1)					
(b)	turns green (1)					
	solid disappears (1)					

Page	5	Mark Scheme: T			Syllabus	Paper
		GCE O LEVEL -	- May/Jun	e 2012	5070	32
Test 4						
(a) y	/ellow/r	ed/brown solution	(1)			
(b) b	black so	blid	(1)	allow dark br	own solid	
Test 5						
(a) y	ellow s	olution	(1)	allow brown		
(b) r	ed-brov	wn ppt	(1)			
ir	nsolubl	e in excess	(1)			
b	oubbles		(1)			
g	gas relię	ghts a glowing splint	(1)			
O	oxygen		(1)			
Test 6						
purple col	lour los	t	(1)	turns colourle	ess/decolourised	
bubbles			(1)			
oxygen			(1)			
Test 7						
(a) n	no react	lion	(1)			
(b) b	oubbles		(1)			
0	oxygen		(1)			
li	iquid tu	rns blue	(1)			

Conclusions

The anion in **R** is iodide or I⁻ (in Test 1 yellow ppt remains in acid) (1) **S** is acting as an oxidising agent (in Test 5 yellow solution or red-brown ppt) (1)

S is acting as a reducing agent (in Test 6 indication purple colour lost) (1)

Note: 25 marking points, maximum 22.

[Total: 22]