UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

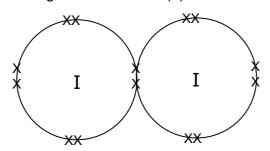
5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.


Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2							version		Syllabus	3	Paper			
					GC	E O LEV	EL – M	lay/Jur	ne 2012		5070		21	
A 1	(a)	Am	monia	ia (1)										[1]
	(b)	Pro	pene	e / sulf	ur diox	de (1)								[1]
	(c)	Oxy	/gen ((1)										[1]
	(d)	Nec	on (1))										[1]
	(e)	Nitr	ogen	n / sulf	ur diox	de (1)								[1]
	(f)	Chl	orine	e (1)										[1]
	(g)	Nitr	ogen	n / car	bon mo	noxide (1)							[1]
													[Tota	al: 7]
A2	(a)	(i)	SO ₂	2 (1)										[1]
		(ii)				oxyger a is SO ₃		5 : 3.75	(1)					[2]
	((iii)	Wate	ter/st	eam (1)									[1]
	((iv)	Iron((III)/I	Fe ³⁺ (1)									[1]
	(b)	(i)	Iron(ı(II) hy	/droxide)								[1]
		(ii)	Fe ²⁺	†(aq) -	+ 2OH ⁻ equation	aq) -> F	e(OH) ₂ ((s)						
					•	` '	depende	ent on (correct for	mulae (1)			[2]
													[Tota	al: 8]
А3	(a)					delocal trons ca				f electro	ns / all ele	ctrons ar	e in	[1]
	(b) Molecules gain (kinetic) energy (1) Allow particles move faster Not atoms gain energy Overcome intermolecular forces / break attraction between molecules (1) Ignore weak forces between particles													
	Not break covalent bonds							[2]						

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2012	5070	21

(c) Correct structure – ignore inner shells (1)

Allow all crosses or all dots

[1]

- (d) (i) $At^{-}(1)$ [1]
 - (ii) element colour state Cl_2 gas Br_2 orange liquid I_2 grey/black

Correct states (1)

Correct colour (1)

Allow red / brown for bromine [2]

(iii) Black solid/dark grey solid (1)

[1]

- (e) (i) (colourless to) yellow solution/straw solution/brown solution/dark grey solid (1) [1]
 - (ii) $Cl_2 + 2I^- \rightarrow I_2 + 2Cl^-$ **Ignore** state symbols

[1]

(f) Astatine is less reactive than iodine / astatine is less oxidising that iodine / iodide is a better reducing agent than astatide (1) [1]

Ignore reference to reactivity series

[Total: 11]

Electron configurations (1)

Numbers of protons (1)

Numbers of neutrons (1)

[3]

(ii) Magnesium loses two electrons and oxygen gains two electrons/two electrons transferred from magnesium to oxygen (1)

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper
	<i>(</i> 1.)		GCE O LEVEL – May/June 2012	5070	21
	(b)	Not inter Not coval large am hard to b break the Ignore la	ectrostatic) attractions between ions /many (ionic) between ions /many (ionic) between ions forces alent bonds for the first mark ount of energy to separate the ions/needs lots of energy (ionic) bonds/high temperature needed to breat ionic lattice/bonds are strong (1) arge amount of energy to break forces forces of attraction between ions	nergy to break the	e (ionic) bonds/
	(c)	Filter rea Wash rea Air dry re	ny aqueous sulfate including dilute sulfuric acid (1) action mixture (1) sidue with water (1) asidue/put residue into oven (1) ave the residue to dry		[4]
		Allowio	ave the residue to dry		
					[Total: 10]
A 5	(a)	Copper,	nickel, iron and magnesium (1)		[1]
	(b)	•			
		temperat	ture increases (1)		[2]
	(c)	(i) Exot	hermic (1)		[1]
			²⁺ + 2A <i>l</i> → 2A <i>l</i> ³⁺ + 3Cu ore state symbols		[1]
	(d)	Which do) layer of aluminium oxide (1) bes not flake off/acts as a protective barrier/which i water or air to reach surface of aluminium (1)	s impermeable to	water/does [2]
	(e)	Mass of	Mo = 10417 (1) A <i>l</i> = 562500g/0.5625tonnes (1) swer to 2 sig figs up to calculator value		ioi.
		Allow al	iswel to 2 sig ligs up to calculator value		[2]
					[Total: 9]
В6	(a)		$_{12}$ SO $_{4}$ /KC $_{1}$ /K $_{2}$ SO $_{4}$ /CaC $_{12}$ /CaSO $_{4}$ /MgC $_{12}$ /MgSO $_{4}$ (1aHCO $_{3}$ /KHCO $_{3}$ /Ca(HCO $_{3}$) $_{2}$ /Mg(HCO $_{3}$) $_{2}$)	[1]
	(b)	0.0276 (1)		[1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE O LEVEL - May/June 2012	5070	21	

(c) Moles of Cl^{-} in 1 dm³ = 0.535/mass in 25 cm³ = 0.475 g (1) Moles in 25 cm³ = 0.0134 (1) Mass of AgCl = 1.92 g (1) [3]

- (d) Desalination / reverse osmosis (1)
 Allow distillation [1]
- (e) (i) OH⁻ (aq) (1)
 pH = 7.9 indicates alkaline/pH above 7 is alkaline/this ion is present in all alkaline solutions (1)
 Allow seawater is alkaline/seawater has a pH above 7
 - (ii) Add universal indicator/pH (indicator) paper (1)

 Allow use of pH indicator

 Idea of matching colour against a pH chart/idea that the colour indicates the pH (1) [2]

[Total: 10]

[2]

B7 (a) Any two from

Same general formula/members vary by a CH₂ group (1) Same functional group/similar chemical properties (1) **Not** a group of elements

Allow have same reactions gradation of physical properties (1)

[1]

(b) Butanoic acid (1) **Allow** methylpropanoic acid

[1]

[1]

Allow OH in the structure [1]

(d) $C_7H_{14}O_2$ (1) Allow $C_6H_{13}COOH$ [1]

(e) Boiling points all increase / boiling points shows a trend And

melting point increase and decreases / melting point is irregular down the series / melting point does not show a trend / melting points fluctuate (1)

-	. u	gco	Mark Concinc. Teachers Version	Cynabas	i apci
			GCE O LEVEL – May/June 2012	5070	21
	(f)	Any tw strong	o from acid fully dissociates and weak acid partially dissocia	tes (1)	
		CH ₃ CC Ignore	$H^+ + Cl^-(1)$ OOH \Rightarrow $H^+ + CH_3COO^-(1)$ state symbols sincorrect equations		[2]
	(a)	CaCO	$_{3}(s) + 2CH_{3}COOH(aq) \rightarrow Ca(CH_{3}COO)_{2}(aq) + H_{2}O(I)$	+ CO ₂ (a)	
	(9)	Correc	t equation (1) t state symbols – dependent on formula (1)	202(9)	[2]
		Conec	t state symbols – dependent on formula (1)		رح] [Total: 10]
В8	(a)	(i) 10	(1)		[1]
	(b)	Ignore Not ele	d ions cannot move/no free ions (1) e electrons cannot move ectrons can move		
			tion ions can move/free ions (1) particles can move in solution but not in a solid		[2]
	(c)	it loses Note N reducti Ignore cathod	equation involves oxidation since electrons are lost/h selectrons/oxygen is oxidised because its oxidation in flust be a clear link between the equation, gain and lost on. We wrong oxidation numbers e equation involves reduction since electrons are gain electrons/hydrogen is reduced because its oxidation numbers.	ncreases (1) ss of electrons an	d oxidation and
	(d)	Al	ond breaking takes in energy and bond forming release low bond forming is exothermic and bond breaking is energy is released than taken in (1)		[2]
		(ii) Mo	oles of oxygen = 104.2 (1)		
		М	oles of water = 208.3 (1)		
		Ma	ass of water = 3750 g (1)		[3]
					[Total: 10]
В9	(a)		n of equilibrium moves to the right/shifts forward/shif	ts towards the pro	oducts / forward
			ion favoured (1)		[2]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 6

because the (forward) reaction is endothermic (1)

[2]

Page 7		Mark Scheme: Teachers' version	Syllabus	Paper			
		GCE O LEVEL – May/June 2012	5070	21			
(b)	Speed increases because particles are more crowded/more concentrated (particles) /more particles per unit volume/particles are closer together (1) more collisions per second/more chance of collision/more frequent collisions (1) [2]						
(c)	Increases rate of reaction (1) Allow reduces the reaction time Allows reaction to take place at a lower temperature/saves energy (1) Allow reduces the activation energy so saves energy resources (1)						
(d)		hydrogen = 50 0000 (1) = 35 000 000 kJ (1)		[2]			
(e)	High pre	ited fat (1) ssure/nickel catalyst (1) nsaturated oil/fats with a carbon-carbon double bon	d	[2]			

[Total: 10]