MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Pa	ge 2		Scheme: Teachers' version	Syllabus	Paper	
			GCE O LEVEL – May / June 2010	5070	22		
A1	(a)	CF₃C <i>l</i>				[1]	
	(b)	CH4 / CC) ₂			[1]	
	(c)	CaCO₃				[1]	
	(d)	BaSO ₄ /	CaCO ₃			[1]	
	(e)	$K_2Cr_2O_7$				[1]	
	(f)	C_2H_4				[1]	
						[Total: 6]	
A2	(a)	1 / one				[1]	
	(b)	number on number of	atomic) number of protons of electrons of neutrons	= 87 = 87 = 87 = 136			
			ct = 2 marks rrect = 1 mark			[2]	
	(c)	 elect soft low r (relation of the second se	mal conductor / trical conductor / or cuts easily / melting point or tively) low densi eable /	/ low boiling point / ty or lightweight IGNORE: light			
		IGNORE IGNORE	y or silvery ALLC : floats on water : chemical prope			[2]	
	(d)	ALLOW: ALLOW:	$_{2}O \rightarrow 2FrOH +$ multiples Fr + H ₂ O \rightarrow Fr state symbols			[1]	

[Total: 6]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May / June 2010	5070	22

A3 (a) $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$

1 mark for correctly balanced equation;

1 mark for correct state symbols (dependent on all formulae being correct)

- (b) (i) gas escapes / hydrogen escapes / gas given off / hydrogen given off / gas released / hydrogen released / gas produced / gas evolved / hydrogen is a gas;
 [1] NOT: hydrogen produced without qualification. ALLOW: ecf from wrong gas in part (a)
 - (ii) downwards curve starting at the same point as the original curve but displayed to the left (at least at first);

Line ends at the same mass as the original ; [1] NOT: curve dipping markedly below the horizontal section and then going upwards to meet it

(c) (acid) particles in dilute acid are less crowded / there are fewer particles (of acid) in a given volume / the particles (of acid) are further apart ; [1] ALLOW: concentration of HCl particles is lower ALLOW: molecules / ions in place of particles ALLOW: molecules / ions in place of particles in concentrated acid are more crowded / there are more particles (of acid) in a given volume etc IGNORE: there are fewer molecules unqualified / there is more water there are more moles in a given volume.

fewer collisions (in dilute acid) / less chance of collisions (in dilute acid) / frequency of collisions lower (in dilute acid) ; [1] ALLOW: reverse argument e.g. more collisions (in concentrated acid) / more chance of collisions (in concentrated acid) ; IGNORE: effective (collisions)

(d) more particles exposed / large(r) surface area ; [1] ALLOW: atoms / ions in place of particles

more collisions / greater chance of collisions / particles collide more often / greater frequency of collisions ; [1] IGNORE: effective (collisions)

(e) white precipitate / ppt or <u>white</u> solid ; [1] IGNORE: bubbles / colourless ppt / incorrectly named ppt

precipitate redissolves (in excess) / precipitate goes to (colourless) solution (in excess); [1] ALLOW: this mark if wrong colour precipitate NOTE: second mark dependent on ppt or solid stated for first mark

[Total: 11]

[2]

	Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE O LEVEL – May / June 2010	5070	22
.4 ((a)	ALLOW:	has electron(s) that can move / are mobile / are deloca graphite has free electron(s) / graphite has a sea of el : implications of layers moving / ions have free electror	ectrons	[1]
		are not n ALLOW:	has <u>all</u> its electrons involved in bonding / has ele nobile / no delocalised electrons ; diamond has no free electron(s) : mention of ions	ectron(s) that c	annot move / [1]
((b)	IGNORE forces ALLOW:	lium chloride has ions fixed in position / ions cannot mo e: electrons cannot move / ions can't carry electricity ions are not free		[1] intermolecular
		aqueous ALLOW: REJECT	: no ions to move sodium chloride has ions that can move / are mobile ; ions are free : reference to moving electrons as well as ions : ions carry electric charge / ions dislocated / ions delo	calised /	[1]
((c)	ALLOW: REJECT	ead at cathode and bromine at anode ; Pb at cathode / Br ₂ at anode : lead(II) / Pb ²⁺ / Br ⁻ / bromide		[1]
		IGNORE 2 nd row: 0 REJECT IGNORE	oxygen / O ₂ ; : O ²⁻		[1]
			nydrogen / H₂ ; : H⁺		[1]
((d)		cial use e.g. extraction of aluminium or any		nt which is

(d) commercial use e.g. extraction of aluminium or any other element which is definitely extracted by electrolysis / purification of copper / (electro)plating; [1] ALLOW: coating metals / hair removal / production of sodium hydroxide NOT: electrolysis of named substance unqualified / reference to electrochemical cells

correct electrolyte / correct formula of electrolyte: This mark is dependent on the correct use BUT allow if it is feasible e.g. zinc sulphate (given incorrect use of zinc in the first part). e.g. molten aluminium oxide dissolved in <u>cryolite</u> / (aqueous) copper sulfate or copper sulfate (solution) / for hair removal accept sweat or sodium chloride (solution). [1]

correct ionic equation: This mark is dependent on the electrolyte used; [1] e.g. $Al^{3+} + 3e^- \rightarrow Al / Cu^{2+} + 2e^- \rightarrow Cu / 2H^+ + 2e^- \rightarrow H_2$

[Total: 10]

	Page 5			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – May / June 2010	5070	22
45 (a)	crac	cking	/ thermal decomposition ;		[1]
(b)	(i)		$_{1} + H_{2}O \rightarrow C_{2}H_{5}OH$ OW: C ₂ H ₆ O for the product		[1]
		(ii)		anol; OW: propan-1-ol / propan-2-ol ORE: formulae		[1]
(c)	(i)	• REJ • IGN(•	two from: temperature between 25°C to 40°C / ECT: high temperature IGNORE: room temperature yeast / zymase / enzymes / ORE: catalyst alone absence of oxygen / anaerobic (conditions) / not expos water REJECT: moisture / damp pH neutral / near neutral / pH 7 ORE: pressure / presence of glucose	sed to air	[2]
		(ii)	rene cons pres equi ALLO phot IGNO qual	one of: wable raw materials used or renewable fuel made erves valuable resources / lower energy costs / lowe sure required / consumes less energy / atmospheric p pment not required / simple apparatus required; OW: carbon neutral / carbon dioxide made (in thi osynthesis (to make more glucose) NOT: carbo osynthesis alone ORE: not as complicated / references to pollution ification : costs alone / faster / uses glucose without qualification	r temperature re pressure require is process) car n dioxide can / consumes e	equired / lower d / specialised be used for be used for
(d)	•		al) distillation / fractionation;		[1]

- I) (fractional) distillation / fractionation; ALLOW: description of distillation e.g. evaporating then condensing the alcohol (first) IGNORE: using an anhydrous salt / named anhydrous salt
- (e) lime water goes milky / cloudy / chalky / misty / white precipitate

[Total: 8]

[1]

Page 6	5	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE O LEVEL – May / June 2010	5070	22
A6 (a) (i)		ion ; DW: additional DRE: specific names		[1]
(ii)	minir	num required is $C_2H_5CH=CH_2$		[1]
(iii)	ALLO (hydi NOT	carbon-carbon) double bonds / <u>only</u> has (carbon-carbo DW: no hydrogen can be added / no addition reactio rogen atoms) : occupied by wrong atoms e.g. C <i>l</i> atoms : has carbon-carbon single bonds	, .	[1] ly occupied by

(b) non-biodegradeable / can't be broken down by bacteria / insoluble in water / <u>only</u> soluble in organic solvents
 [1]
 ALLOW: doesn't react with water / unreactive
 IGNORE: it is a hydrocarbon / it is strongly bonded

[Total: 4]

	Pa	ge 7	,	Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – May / June 2010	5070	22
Β7	nitrogen harmless ALLOW: effect / c NOT: nit			uting gases formed / harmless gases formed / nitrog and water are non-polluting / the product <u>s</u> are r s; nitrogen and water don't affect ozone / don't contrib on't contribute to acid rain rogen and water less harmful / nitrogen and water are nentally friendly products	non-polluting/the	product <u>s</u> are [1] to greenhouse
	(b)			eaking endothermic / requires energy / absorbs energy nd making exothermic / releases energy / gives out en		[1]
		moi	re ene	ergy is released than absorbed (or similar wording);		[1]
		RE. NO	JECT TE: 0	: implication that energy needed in bond formation energy released on forming bonds is greater that or similar wording) = 2 marks	in energy taker	
	(c)	(i)	mole	es N ₂ H ₄ = 1 000 000 / 32 = 31 250 ;		[1]
				es O_2 = moles N_2H_4 or implication of this in working ; OW: ecf from wrong moles of N_2H_4		[1]
				time of O_2 (31 250 × 24) = 750 000 dm ³ / 7.5 × 10 ⁵ dm ³ OW: ecf from second mark.	³ ;	[1]
			32 g	rnative for 1 st two stages: $N_2H_4 \rightarrow 32g O_2 (1 mark)$ es O ₂ = 1 000 000 / 32 = 31 250 (allow ecf) (1 mark)		
		(ii)	ALL capa	quid oxygen takes up less space / room ; OW: able to store more in liquid form / gaseous volum acity. ORE: less easily spread out/no gas can escape / less		
			prev	ent reaction with other substances		
	(d)	(i)	ALL	$_{5}Cl / N_{2}H_{6}Cl_{2}$ OW: any order of atoms		[1]
				OW: correct displayed formulae or mixtures of displaye ECT: N_2H_5Cl in equation if more than one product give		r
		(ii)		Н Н • х • х		[2]
				•x •x H H		
				cture completely correct = 2 marks FE: (i) only outer shells need be shown		
			IF: ir	 (ii) no distinction need be made between dots and nner shells incorrect = 1 mark maximum. 	crosses	
			IF: s	tructure with a triple bond and no lone pairs = 1 mark : structures with separate nitrogen atoms / double bor	ds (= 0)	

Pa	age 8	e 8 Mark Scheme: Teachers' version Syllabus			
	U		GCE O LEVEL – May / June 2010	5070	Paper 22
B8 (a)	(i)	buta	noic acid / methylpropanoic acid ;		[1]
	(ii)		mum is CH ₃ CH ₂ CH ₂ COOH / (CH ₃) ₂ CHCOOH OW: <u>correct</u> displayed formulae or mixture of structura	l and displayed	[1]
	(iii)	C ₂ H	4O		[1]
(b)	mo	lar rat	io correct C = 4.35, H = 13.0, O = 2.18 ;		[1]
	oro	_OW: down	correct error carried forward as long as there is from the first stage $\rm C_2H_5OH$	s not too much	[1] rounding up
(c)	(i)	ethy	l ethanoate ;		[1]
	(ii)	ALL	ent / flavouring / perfume / aroma / OW: to make the taste in sweets / deodorants ORE: food additive		
(d)) (i) -	C ∥ □– C	0 ∥ ; - 0 - ■ - C - O -		[2]
			ect structure of ester linkage showing ALL atoms e boxes) = 1 mark	and bonds (ind	cluding bonds
	-	ALLO ALLO NOT ALLO	ast 2 units shown with continuation bonds = 1 mark OW: ester linkages reversed OW: boxes or part formulae between ester linkages the C: more than three type of 'boxes' OW: O $O\ \ \ -C - O - \blacksquare - COW: single unit shown bracketed and continuation bonnark dependent on ester linkage being shown correctly$	nds	or –CO2- etc
	(ii)	fat /	lipid / (tri)glyceride;		[1]

	Page 9			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – May / June 2010	5070	22
B9	(a)	he other gains [1]				
	(b)	• •		iodine present / lower concentration of iodine ; : less reactants present / diluted in colour because mo	ore colourless HI	[1] present
			right ALL(ALL(ition of) equilibrium moves to the right / increased ; OW: more hydrogen and iodine react to form hydrogen OW: more hydrogen iodide formed / more product fo eases (to achieve new equilibrium)	n iodide	[1]
			The	reaction is endothermic / the reaction absorbs heat (o	r energy) / Δ <i>H</i> is	positive; [1]
	(c)	ansv		hydrogen = 45.3 / 2 = 22.65 only scores mark 22.7		[1]
				HI = 45.3; ecf / indication that moles HI 2× moles of hydrogen i.e	e. use of 1:2 ratic	[1]
			•	45.3 × 128) = 5798 g / 5798.4 g; ecf moles HI / 5800 g		[1]
		2 g l so 1	hydro g hy	ve method: ogen → 2 × 128 = 256 g HI (1 mark) vdrogen → 128 g HI (1 mark) vdrogen → 45.3 × 256 / 2 = 5798(.4) g (1 mark)		
	(d)	(i)	Pb ²⁺	$(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$		[2]
			corre	nced equation = 1 mark ect state symbols = 1 mark (dependent on correct forn OW: full ionic equation ⁻ : X ⁻ in place I ⁻ and PbX ₂ in place of PbI ₂	nulae above)	
		• •		X is a reducing agent / HI is a reducing agent / it or ised ;	X can be oxidise	ed / HI can be [1]

Pag	ge 10	0	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE O LEVEL – May / June 2010	5070	22
B10 (a)	(i)	ALL ALL IGN	$H + HCl \rightarrow KCl + H_2O$ OW: $K_2CO_3 + 2HCl \rightarrow 2KCl + H_2O + CO_2$ OW: $KHCO_3 + HCl \rightarrow KCl + H_2O + CO_2$ ORE: state symbols The word equation		[1]
	(ii)	othe colo	e (acid against alkali) / titration / description of titratio r until neutralised / add one solution to another until ur ; ORE: lack of repeating the titration without indicator		
			oorate the solution (from the titration flask to dryness) ; OW: evaporate / heat / boil		[1]
		ALL titrat	OW: ecf from wrongly named <u>solution</u> in first marking p OW: evaporation etc from potassium chloride / salt ion ECT: if method incorrect e.g. precipitation the mark for	solution withou	
(b)	(i)		₄) ₃ PO ₄ OW: PO ₄ (NH ₄) ₃		[1]
	(ii)		ar mass (NH ₄) ₃ PO ₄ = 149; OW: ecf from wrong formula in part (i)		[1]
		ALL	/ mass = 28.2 OW: 28.19 / 28 OW: ecf from wrong molar mass		[1]
(c)	(i)	ALL	$\begin{array}{l} DH)_2 + 2H^+ \rightarrow Ca^{2+} + 2H_2O \\ OW: Ca^{2+} + 2OH^- + 2H^+ \rightarrow Ca^{2+} + 2OH^- + 2H_2O \\ OW: OH^- + H^+ \rightarrow H_2O \text{ (or multiples)} \end{array}$		[1]
	(ii)	nitro ALL IGN	nonium phosphate (reacts with calcium hydroxide to) g gen (content) with ammonium phosphate OW: reverse arguments ORE: ammonia poisonous / potassium nitrate is more ECT: loses nitrogen gas / potassium nitrate has a grea	soluble	[1]
(d)		•	ess) sodium hydroxide and aluminium (powder / foil ar add sodium hydroxide and Devarda's alloy	nd warm) ;	[1]
			a given off / gas (given off) turns red litmus blue; his mark is dependent on correct reagents $Al + NaOH$		[1]
	add		ve: (II) sulfate then concentrated sulfuric acid (1 mark) ng forms at the interface (1 mark)		