MARK SCHEME for the May/June 2008 question paper

5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme	Syllabus	Paper	
				GCE O LEVEL – May/June 2008	5070	02	
A1	(a)	carb	on moi	noxide / CO		[1]	
	(b)	amn	nonia /	NH ₃		[1]	
	(c)	argo	n / Ar			[1]	
	(d)	carb	on moi	noxide / CO		[1]	
	(e)	oxyg NOT	gen / O	2		[1]	
						[Total: 5]	
A2	(a)	36.8 <i>M</i> r of	(%) / 3 f iron(II	6.8 / 37(%) (answer alone = 2 marks) (NOT 36%) I) sulphate = 152 (for 1 mark)		[2]	
	(b)	bariu NOT white IGN ALL	um nitra : bariu e preci ORE: ii OW: th	ate / other soluble barium salt e.g. barium chloride + m hydroxide pitate / solid ncorrect name of precipitate is mark if nitric acid missing from 1 st marking point	nitric / hydrochl	oric acid [1] [1]	
	(c)	4Fe ² 1 ma 1 ma	2^+ + O_2 ark for ark for	+ $4H^+$ → $4Fe^{3+}$ + $2H_2O$ correct reactants and products; correct balance		[2]	
	(d)	(i)	orange	e to green		[1]	
		(ii)	green ALLOV	to yellow N: brown / orange / reddish brown		[1]	
	(e)	(i)	0.000	76 / 7.6 × 10 ⁻⁴ (moles)		[1]	
		(ii)	mols F	^c e ²⁺ = 0.00456 N· 0.0046		[1]	
			mass of ALLOV	of iron(II) ions = 0.255 /0.26 / 0.258 (g) N: error carried forward [i.e. answer to moles $Fe^{2+} \times$	56]	[1]	
						[Total: 11]	

Page 3		ge 3	Mark Scheme	Syllabus	Paper
			GCE O LEVEL – May/June 2008	5070	02
A3	(a)	43 protor 55 neutro	ns + 43 electrons ons		[1] [1]
	(b)	any reas ALLOW:	onable, correct, isotope e.g. $\frac{97}{43}$ Tc mass numbers from between 86 and 110		[1]
	(c)	same nu ALLOW: electrons NOT: cha NOT: cha	mber of electrons and protons / same number of + and balance between the number of protons and electrons s are - and protons are + arge on electron = to that on the proton arge on electron and proton is opposite	I - charges;	[1] [1]
	(d)	any TWC high varia form sol high	D from: melting point / boiling point; able valency / oxidation state / (compounds) have ions a coloured <u>compounds</u> / form coloured <u>ions;</u> [NOT: it ution] density;	with different ch : is coloured / f	arges; orms coloured
		 (con cata 	lytic activity		[2]
		5010	.,		[4]
					[Total: 7]
A4	(a)	ethane / ALLOW: ethene / NOT: go	alkane: (bromine) stays orange / no (colour) change / s bromine colours of brown / red / orange alkene: (bromine) decolourised / (orange) to colourless es	stays the same; s	[1] [1]
	(b)	pair of el 6 correct [indepen	ectrons between the two carbons; shared pairs between carbons and 6 hydrogen atoms dent marking points]		[1] [1]
	(c)	C ₂ H₅C1/ ALLOW: ALLOW: ALLOW:	$C_2H_4Cl_2$ etc. (up to C_2Cl_6) any order of atoms correct graphical / displayed formulae / dot and cross HCl	diagrams	[1]
	(d)	butene / ALLOW: C ₄ H ₈ NOT: CH NOT: C _n	butylene but-1-ene / but-2-ene / methylpropene H ₃ CH ₂ CH ₂ CH ₃ / graphical formulae H _{2n}		[1] [1]

[Total: 7]

	Page 4			Mark Scheme	Syllabus	Paper	
				GCE O LEVEL – May/June 2008	5070	02	
A5	(a)	(i)	P ₂ O ₅	5 / P ₄ O ₁₀		[1]	
		(ii)	phys low i ALL cher	sical property: melting point / low boiling point / electrical insulator or o OW: white in colour / solid mical property:	does not conduc	t [1]	
			acidi NOT	ic oxide / reacts with alkalis / reacts with bases / dissol : it is an acid / dissolves in water	ves in water to f	orm acid	
	(b)	2K0 1 m 1 m	C <i>l</i> O₃ - lark fo lark fo	\rightarrow 2KC <i>l</i> + 3O ₂ or correct reactant and products; or correct balance		[2]	
	(c)	S + IGN	O2 – IORE	→ SO₂ : state symbols		[1]	
	(d)	alka NO	ane <u>a</u> T: it fi	<u>nd</u> C _n H _{2n+2} its a general formula		[1]	
						[Total: 7]	
A6	(a)	(i)	volca ALLO IGNO smo	anoes / treatment of <u>sulphide</u> ores OW: bacterial <u>oxidation</u> / <u>burning</u> natural gas ORE: unqualified burning fuels / from car engines / ke / from power stations	making sulphu	[1] ric acid / from	
		(ii)	lighti ALL NOT NOT	ning / car <u>engines</u> / car exhausts / <u>high temperature</u> fu OW: burning fuel in car : from cars unqualified : bacterial activity / from fertilizers	rnaces / explosiv	ves [1]	
	(b)	(i)	carb	on dioxide / CO ₂		[1]	
		(ii)	calci IGN	ium nitrite / calcium nitrate or correct formulae ORE: incorrect oxidation numbers		[1]	
		(iii)	Any ALLO NOT ALLO NOT	one of: erodes buildings / reacts with buildings or statues OW: corrodes buildings / eats away buildings : destroys buildings / damages buildings forest death / kills trees or plants / kills fish in lakes / OW: damages / destroys crops : kills animals (unless in lakes / rivers) breathing difficulties in humans OWTTE : causes pollution / harmful (unless specified) / affects	acidifies lakes building or anim	[1] nals	

Page 5		ge 5	Mark Scheme	Syllabus	Paper	
			GCE O LEVEL – May/June 2008	5070	02	
	(c)	 read corre corre ALLOW: ALLOW: IGNORE 	tant on left and product on right and products above re ect arrow and label for activation energy (even if exother ect arrow and label for enthalpy change line in place of arrow E for activation energy and 43 kJ for Δ <i>H</i> c direction of arrow	eactants; ermic reaction di	[1] rawn) [1] [1]	
					[Total: 8]	
B7	(a)	(solution NOT: go Cl ₂ + 2B chlorine ALLOW: NOT: inc NOT: ch) goes orange / red / brown es yellow $r^- \rightarrow Br_2 + 2Cl^-$ has gained electrons / it has gained electrons oxidation number of chlorine decreases / goes from 0 correct oxidation numbers loride has gained electrons) to -1	[1] [1] [1]	
	(b)	dot and o with 2+ a NOT: 2+ ALLOW: dot and o with - at ALLOW: ALLOW: NOT: - ir	cross diagram of magnesium ion (ignore whether dots at top right / near top right in nucleus written as $Mg^{2^+} = 2.8$ cross diagram of chloride ion (ignore whether dots or c top right / near top right only one chloride ion shown written as $Cl^- = 2.8.8$ n nucleus	or crosses) rosses)	[1]	
	(c)	 diss ALLOW: add wate ALLOW: ALLOW: filter ALLOW: was leav ALLOW 	olve it / silver nitrate in water; use / add aqueous solution / from (aq) in equation <u>solution</u> of soluble chloride / named soluble chloride er / hydrochloric acid; hydrochloric acid alone without the word solution or di this mark if equation given with ALL state symbols cor ; decant / centrifuge h precipitate with water <u>and</u> leave water to evapora e to dry wash ppt with water <u>and</u> dry in an oven	/ soluble chlorid ssolved in water rect te / wash ppt w	[1] e dissolved in [1] /ith water <u>and</u> [1]	
	(d)	depletior ALLOW: ALLOW: NOT: inc	n of ozone / destroys ozone (molecules) thins ozone layer / damages ozone layer / makes hole increases greenhouse effect / greenhouse gas creases risk / causes skin cancer	in ozone layer	[1]	

[Total: 10]

	Page 6			Mark Scheme	Syllabus	Paper
				GCE O LEVEL – May/June 2008	5070	02
B8	(a)	boil IGN	ing po IORE	pint / volatility : number of carbon atoms		[1]
	(b)	(i)	brea ALL ALL	kdown of long chained hydrocarbons (into shorter / sm OW: large for long chained; alkanes / carbon chains fo OW: converting long chained alkanes to alkenes	naller chains); r hydrocarbons	[1]
			NOT by <u>h</u> or by NOT ALL	 Splitting larger fractions breaking down larger substances / molecules / particities temperature / stated temperatures in range 400–80 y high temperature and catalyst / stated temperatures by heating / heat OW: aluminium oxide / silicon dioxide / zeolites in place 	cles)0°C; in range 200–80 e of word 'cataly	[1])0°C + catalyst ˈst'
		(ii)	fract grea	ions which are less needed / exceed demand chang ter demand; OW: idea of less useful fractions used to make more u	ed to those mo seful	re needed / in [1]
			NOT	: larger fractions / alkanes to smaller alkanes		
			gas	oil fraction converted to gasoline	00000	[1]
			ALL	OW: gas on fraction converted to kerosene / petroledin OW: waxes converted to one of the above 3 fra verted to one of the above 3 fractions	ctions / waxes	and bitumen
	(c)	(i)	CH ₃	$CH=CH_2$ (minimum structure to show double bond)		[1]
		(ii)	C ₁₅ H ALL e.g.	$H_{32} \rightarrow C_3H_6 + C_{12}H_{26}$ OW: other possible product apart from propene with co 2 $C_3H_6 + C_9H_{20}$ on right	orrect balance	[1]
	(d)	(i)	reac ALL ALL ALL	t with <u>steam</u> and <u>catalyst</u> (both required) OW: phosphoric acid (in place of the word 'catalyst') OW: water + temperature of above 100°C in place of s OW: from correct equation with correct state symbols	team	[1]
			CH ₃ ($CH_2CH_2OH / CH_3CH(OH)CH_3$ (as minimum) OW: full formula showing all atoms and bonds or mixtu	ires of the two	[1]
		(ii)	– CH ALL	$H(CH_3) - CH_2 - CH(CH_3) - CH_2 - or full structural formOW: - [CH(CH_3) - CH_2]_n -$	nula	[1]
						[Total: 10]
B9	(a)	H⁺ / NO	′ H₃O T: 'hy	* drogen ions'		[1]
	(b)	(i)	mole Mg i ratio	es Mg (0.24 / 24) = 0.01 AND moles acid (2 × 5/1000 n excess since requires 2 moles acid to 1 mole mag in equation	0) = 0.01 ; nesium / becau	[1] se of 1:2 mole [1]
		(ii)	mole 0.00	es MgC <i>l</i> ₂ (0.01/2) = 0.005; 5 × 95 = 4.75 / 0.48 g [NOT: 0.4 (g)]		[1] [1]

Page 7		,	Mark Scheme	Syllabus	Paper
			GCE O LEVEL – May/June 2008	5070	02
	(iii)	ANY ALLO ALLO	'3 of: same number of moles of each acid / same amount of acid / same number of hydrogen ions which react in ea OW: same concentration of each acid at the same volu hydrochloric acid is a strong acid and ethanoic acid acid is stronger than ethanoic acid ORA; hydrochloric acid fully ionised and ethanoic acid partia OW: hydrochloric acid more ionised than ethanoic acid higher concentration of hydrogen ions in hydrochloric hydrogen ions in ethanoic acid; more collisions per unit time / collision rate highe ethanoic acid ORA	replaceable hyd ach acid; ume is a weak acid lly ionised l ORA c acid / lower co r with hydrochlo	[3] Irogen in each / hydrochloric oncentration of oric than with
(c)	(i)	2CH ALL	$_{3}$ COOH + Na ₂ CO ₃ \rightarrow 2CH ₃ COONa + CO ₂ + H ₂ O OW: correct ionic form for sodium ethanoate		[1]
	(ii)	bubb ALL ALL NOT	bles/ effervescence OW: tube gets hot / heat given off OW: sodium carbonate dissolves / disappears : gas given off / carbon dioxide given off		[1]
					[Total: 10]
B10(a)	req	ular p	attern of positive ions:		[1]
	ALL	OW:	$+ / X^{+} / X^{2+}$ etc. for the positive ions		[1]
	NOT: negative sign / e / e dispersed amongst the ions IGNORE: inequality of numbers of electrons and + charges NOT: electrons in clumps separated from positive ions NOT: negative sign / e ⁻ / e in circles unless the circles are considerably smaller than positive ions				
(b)	eleo	ctrons	move / electrons are delocalised / sea of electrons		[1]
	NO NO are	T: ele T: ref still a	ectrons are free (unless qualified) erence to free electrons in the outer shells / valency associated with particular atoms	electrons if it im	plies that they
(c)	(i)	reac ALL NOT	tion is fast <u>er</u> OW: larg <u>er</u> surface area for reaction : reaction is fast (comparison needed)		[1]
	(ii)	mole	es hydrogen (0.072 / 24) = 0.003		[1]
		mas ALL	s zinc = 0.003 × 65 = 0.195 g OW: error carried forward		[1]
	(iii)	16.2 ALL	5% / 16.3% OW: error carried forward from part (ii) to give values t	pelow 100%	[1]

Page 8	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2008	5070	02

(d) three of:

- (zinc gives) white precipitate (on addition of aqueous ammonia);
- (white) ppt dissolves in excess ammonia/gives colourless solution with excess ammonia;
- copper would give (light) blue ppt (on addition of aqueous ammonia);

ALLOW: ppt is not blue

• (if copper) (light) blue ppt would dissolve in excess ammonia/gives blue solution with excess ammonia;

ALLOW: no blue solution formed with excess ammonia

[Total: 10]

[3]