
	Candidate Number	Name	
UNIVERS		E INTERNATIONAL EXAMINATIONS	
CHEMISTRY		5070/04	
Paper 4 Alte	rnative to Practical	May/June 2006	
	wer on the Question Pap laterials are required.	ber. 1 hour	
Write in dark blue or bla You may use a pencil fo Do not use staples, pap Answer all questions. You may use a calculate At the end of the examin	per, candidate number an lick pen in the spaces pro- or any diagrams, graphs o er clips, highlighters, glue or. nation, fasten all your wor	e or correction fluid.	
		For Examiner	s Use

1 Which of the measuring cylinders shows exactly 20 cm³ of liquid?

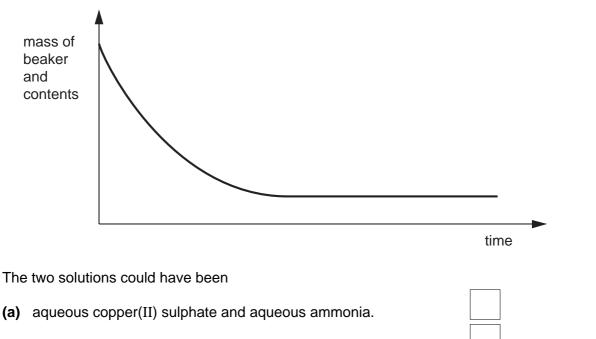
2 The apparatus below was used to electrolyse water.

[Turn over www.theallpapers.com

	4	For Examiner's
(b)	State how the volume of gas collected in tube ${\bf X}$ compares with the volume of gas collected in tube ${\bf Y}.$	Use
	[1]	
(c)	Name a gas that may be used to sterilise water and give a test for this gas.	
	gas	
	test[2]	
(d)	A student added a small piece of sodium and a small piece of iron to separate samples of water. What observations were made?	
	sodium	
	iron	
	[3]	

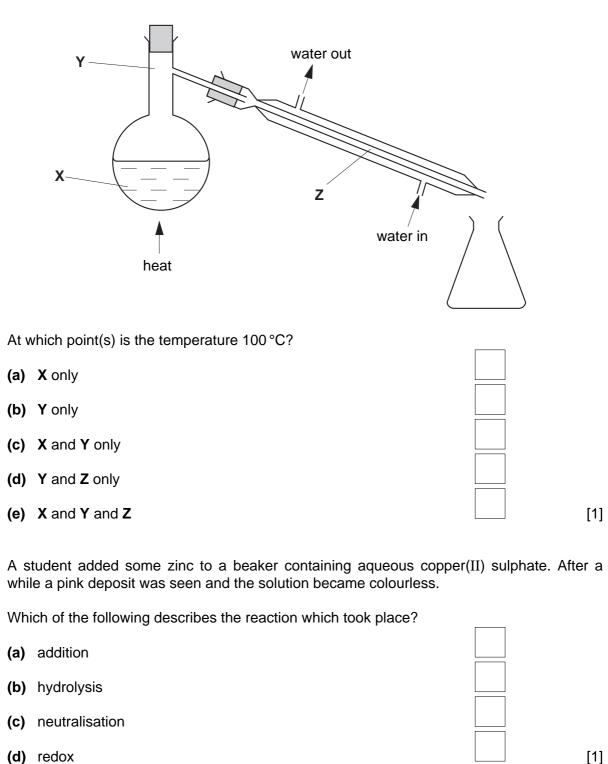
A student added 30 cm^3 of 1.5 mol/dm^3 aqueous silver nitrate to a beaker containing 50 cm^3 of 1.0 mol/dm^3 aqueous sodium bromide.

	What colour was the precipitate?
(ii)	Name the method by which this precipitate was separated from the mixture.
	[2]
(b) (i)	Calculate the number of moles of silver nitrate contained in 30 cm ³ of 1.5 mol/dm ³ aqueous silver nitrate.
	moles
(ii)	Calculate the number of moles of sodium bromide contained in 50cm^3 of 1.0mol/dm^3 aqueous sodium bromide.
	moles [2]
Sodium	bromide reacts with silver nitrate according to the equation below.
	$AgNO_3 + NaBr \longrightarrow AgBr + NaNO_3$
	ing this equation and your answers to (b) , calculate the mass of silver bromide oduced in this experiment.
ГЛ	
۲A (Ar	: Ag, 108; Br, 80]
۲A _r	: Ag, 108; Br, 80]
۲ _۲	: Ag, 108; Br, 80]
[A _r	: Ag, 108; Br, 80]
۱۸	: Ag, 108; Br, 80]
ι۳	: Ag, 108; Br, 80]
ιA	: Ag, 108; Br, 80]
ι <i>Α</i> ,	: Ag, 108; Br, 80]
 (d) Th	
 (d) Th wit	g [2] e student repeated the experiment using 40 cm ³ of 1.5 mol/dm ³ aqueous silver nitrate
 (d) Th wit	g [2] e student repeated the experiment using 40 cm ³ of 1.5 mol/dm ³ aqueous silver nitrate h 50 cm ³ of 1.0 mol/dm ³ sodium bromide.


For Examiner's Use

[1]

[1]


For questions 4 to 8 inclusive, place a tick in the box against the best answer.

- 4 Hydrochloric acid has which of the following properties?
 - (a) It liberates ammonia from ammonium salts.
 - (b) It reacts with any base to give a salt.
 - (c) It reacts with any metal to give hydrogen.
 - (d) It turns litmus paper blue.
- **5** Two solutions were mixed in a beaker and the mass of the beaker and contents was recorded at various times after mixing. The graph shows the results.

- (b) aqueous sodium carbonate and dilute nitric acid.
- (c) aqueous sodium hydroxide and aqueous zinc sulphate.
- (d) aqueous sodium sulphate and dilute hydrochloric acid.

6 The diagram below shows apparatus used to distil sea-water.

© UCLES 2006

8 A student did an experiment to decompose hydrogen peroxide.

Some manganese(IV) oxide, $\mbox{MnO}_2,$ was added to increase the rate of reaction.

 $2H_2O_2(aq) \longrightarrow 2H_2O(I) + O_2(g)$

100 cm³ of 0.050 mol/dm³ hydrogen peroxide was allowed to decompose until no more oxygen was produced.

One mole of a gas at 25 °C occupies a volume of 24 dm³.

The volume of oxygen produced was

- (a) 12 cm³.
- **(b)** 60 cm³.
- (c) 120 cm³.
- (d) 600 cm³.

[1]

9 R is a mixture of iron(II) sulphate and iron(III) sulphate.

A student determined the percentage of iron(II) sulphate in the mixture using 0.0200 mol/dm³ aqueous potassium manganate(VII), solution **S**.

Potassium manganate(VII), which is purple, oxidises the iron(II) ions in the mixture.

(a) Suggest why potassium manganate(VII) does not react with iron(III) ions.

```
.....[1]
```

A sample of **R** was added to a previously weighed container, which was then reweighed.

mass of container + \mathbf{R} = 18.04 g mass of container = 11.96 g

(b) Calculate the mass of R used in the experiment.

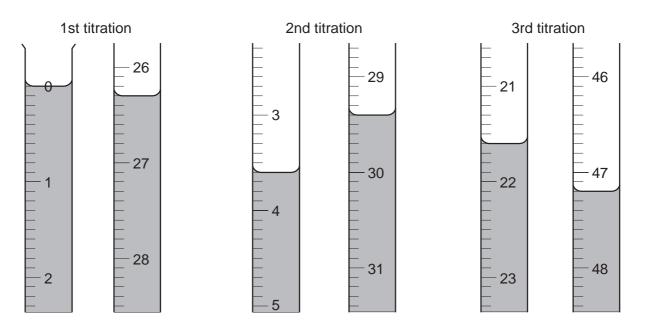
.....g [1]

The sample of **R** was placed in a flask, dissolved in 100 cm^3 of dilute sulphuric acid and the solution made up to 250 cm^3 with distilled water. This was solution **T**.

 25.0 cm^3 of **T** was transferred into a conical flask.

(c) What piece of apparatus should be used to transfer this volume of T?

Solution **S** was put into a burette and run into the conical flask containing **T**.


(d) What was the colour of the solution in the conical flask

(i) before S was added,(ii) at the end-point?

......[1]

[2]

Three titrations were done. The diagrams below show parts of the burette with the liquid levels at the beginning and end of each titration.

(e) Use the diagrams to complete the following table.

titration number	1	2	3
final burette reading / cm ³			
initial burette reading / cm ³			
volume of S used / cm ³			
best titration results (\checkmark)			

Summary

Tick (\checkmark) the best titration results.

Using these results the average volume of \mathbf{S} used was cm³. [4]

S is 0.0200 mol/dm³ potassium manganate(VII).

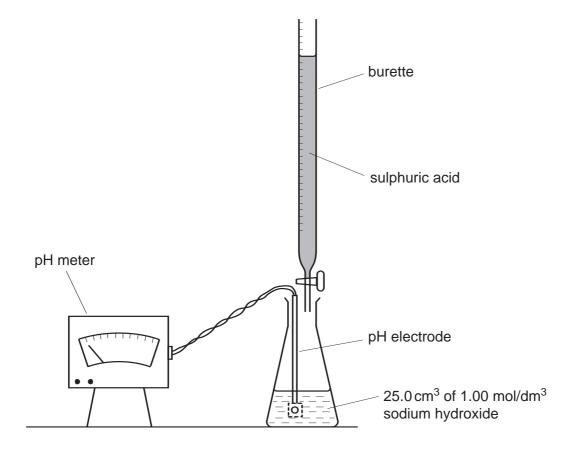
(f) Calculate the number of moles of potassium manganate(VII) present in the average volume of **S** in (e).

..... moles [1]

11

For

10 The following table shows the tests a student did on substance V and the conclusions made from the observations. Complete the table by describing these observations and suggest the test and observation which led to the conclusion in test (d).

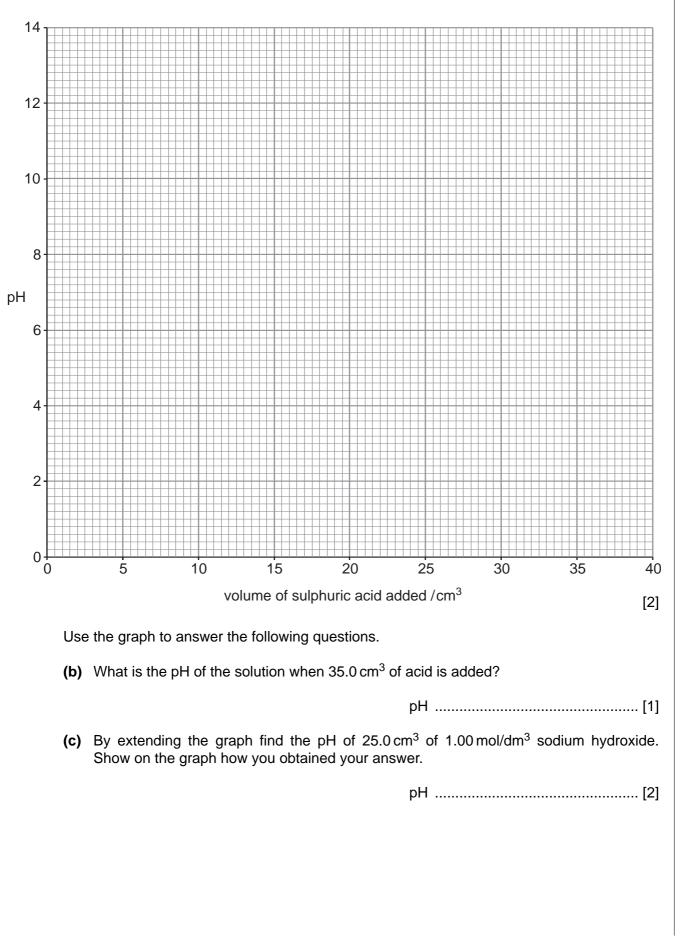

	test	observation	conclusion
(a)	V was dissolved in water and the solution divided into three parts for tests (b), (c) and (d).		V does not contain a transition metal.
(b)	(i) To the first part, aqueous sodium hydroxide was added until a change was seen.		V may contain Zn^{2+} ions or Al^{3+} ions.
	(ii) An excess of aqueous sodium hydroxide was added to the mixture from (i).		
(c)	 (i) To the second part aqueous ammonia was added until a change was seen. 		The presence of Zn ²⁺ ions is confirmed in V .
	(ii) An excess of aqueous ammonia was added to the mixture from (i).		
(d)			V contains I [−] ions.

BLANK PAGE

11 A student was asked to prepare a sample of the salt, sodium sulphate.

 $25.0\,\text{cm}^3$ of $1.00\,\text{mol/dm}^3$ sodium hydroxide was transferred to the conical flask and sulphuric acid was added from a burette.

After each addition of sulphuric acid, the pH of the solution was recorded. The apparatus and table of results are shown below.



volume of acid added / cm ³	pH value
5.0	13.6
10.0	13.4
20.0	12.2
22.0	11.8
24.0	11.2
26.0	10.0
28.0	4.2
30.0	3.0
40.0	1.2

A graph of pH against the added volume of acid was drawn to find the volume of acid required to neutralise 25.0 cm³ of 1.00 mol/dm³ sodium hydroxide.

(a) Plot the results on the grid below and draw a smooth curve through the points.

15

For

Examiner's

(d)	(i)	Suggest the pH of the solution at the end-point.
	(ii)	Using your answer to (d)(i) , what volume of acid is required to neutralise 25.0 cm ³ of 1.00 mol/dm ³ sodium hydroxide?
		cm ³
		[2]
25.0) cm ²	arate experiment the volume of sulphuric acid from (d)(ii) was added to a further ³ of 1.00 mol/dm ³ sodium hydroxide. The resulting solution was used to produce sulphate crystals.
(e)	(i)	Describe briefly the steps the student should take in order to produce good quality crystals from this solution.
		[3]
	(ii)	The equation for the reaction is
	. ,	$H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O$
		Calculate the maximum mass of sodium sulphate that can be produced from the neutralisation of 25.0 cm ³ of 1.00 mol/dm ³ sodium hydroxide. [A_r : Na, 23; S, 32; O, 16]
		g [2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.