GCE O Level

MARK SCHEME for the May/June 2006 question paper

5070 CHEMISTRY

5070/02

Paper 2

maximum raw mark 75

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses

Page 2		Mark Scheme		Syllabus	Paper
	G	CE O Level – May/June	2006	5070	02
		Sectior	n A		
Maximum 4	5 marks				
A1 five <u>nar</u>	<u>mes</u> at (1) each	pena	lise correct formula	e once only	
(a) nic	kel				
(b) alu	minium <i>or</i> sodium	1			
(c) alu	minium oxide				
(d) niti	ogen <i>or</i> phosphoi	rus			
(e) iro	n <i>or</i> nickel				
					[Total:
A2 (a) C					[
(b) C					[
(c) D a	and E both neede	d for			[
(d) six	entries to the tab	le:			
all	six correct			(2)	
five	e correct			(1)	
les	s than five			(0)	[
		atom	ion		

	atom	ion
protons	19	19
electrons	19	18
neutrons	20	20

[Total: 5]

Page 3				Mark Scheme	Syllabus	Paper
				GCE O Level – May/June 2006	5070	02
A 3	(a)	(i)	<u>one</u>	characteristic:	(1)
			e.g.	same chemical reactions gradation in differ by CH_2	physical properties	3
			<u>not</u>	has a general formula		
			form (CH	nula is C _n H _{2n} H ₂) _n	(1)
						[2
	(b)	(i)	equa	ation : $2C_3H_6 + 9O_2 \rightarrow 6CO_2 + 6H_2O$		
				ymbols correct ect balance	(1 (1	
		(ii)		stitution reaction	(1	
						[3]
	(c)			opene <i>or</i> propylene structure with double bond shown and all H atom	(1	
		COL	ect s		ns indicated (1) [2]
						ے [Total: 7]
A4	(a)	equ	ation	n: CaCO ₃ → CaO + CO ₂		[1]
	(b)	(i)	equa	ation: CaO + H ₂ O \rightarrow Ca(OH) ₂	(1	
		(ii)	nam	<u>ne</u> is calcium carbonate	(1)
						[2
	(c)	any	one	large scale use e.g.		
		neu	ıtralis	mortar/ making plaster/ for limewash/ softe e acid soil/ manufacture of sodium carbonate/ removing acidic gases or removing acidic waste	washing soda/ m	
		p0.			5 m madelly	[1
	(d)	calo	culatio	on		[3]
		•	456	of Ca_3SiO_5 is 228, $Ca(OH)_2$ - 74 g Ca_3SiO_5 gives 222 g $Ca(OH)_2$ (mark for correst g Ca_3SiO_5 gives 444 g $Ca(OH)_2$	ect ratio)	

[Total: 7]

Pag	ge 4	Mark Scheme GCE O Level – May/June 2006	Syllabus 5070	Paper 02	
A5 (a)	formul	a is SiC	3010	[1]	
. ,	graphi	te has free / delocalised / mobile electrons bes not	(1) (1)		
				[2	
(c)	(i) Si	C has <u>many</u> strong /covalent bonds	(1)		
	(ii) di	amond has strong <u>er</u> bonds	(1)		
				[2]	
(d)	answe	er 4.40 g		[1]	
				[Total: 6	
A6 (a)		oservations at (1) each: on the surface moves bubbles dissolves/disappears	5	[2]	
(b)	equati	on: 2 Li + 2 H ₂ O \rightarrow 2 LiOH + H ₂		[1]	
(c)	electro	on loss is oxidation or oxidation is an increase in O.N.		[1]	
(d)		oservations			
	exploc	les/pops burns/flame		[2]	
				[Total: 6	
A7 (a)		aphs are (roughly) similar high CO ₂ matches high temperatures	(1)		
	m	<u>/o</u> effects at (1) each: elting of polar ice or rise in sea levels esertification/ <u>extreme</u> climate changes/effect on animal/	plant habitats(2)		
				[3]	
(b)		d cross for CO ₂ s (1) only no double bond (0)	(2)		
				[2]	
(c)		ame methane	(1)		
		ow flatulence or decay of vegetation	(1)		
	oz Cl	vo points from zone absorbs u.v. light/protects against u.v. light FC's or chlorine atoms react with ozone			
	C	FCs deplete the ozone layer/reduce the amount of ozor	ie (2)		
				[4]	
				[Total: 9]	

[Total for Section A: 45]

Page 5			Mark Scheme		Syllabus	Paper	
				GCE O Level – May/June 2006	5070	02	
				Section B			
				Answer any three questions			
B8 (a	a) so	ource	is ferti	lisers <i>or</i> detergents			[1]
(k	o) ar	ny <u>thre</u>	<u>ee</u> poi	nts from four			
	•	alg	al bloc	om forms			
	•			s sunlight nts die			
	•		-	emove oxygen from the water			
							[3]
10	;) (i)	eith	hor	add Al and NaOH and warm			
(0	<i>,</i> (י)	en	101	NH_3 turns litmus blue			
		or		add conc. H_2SO_4 and $FeSO_4$			
				brown ring forms	(2)		
	(ii) nitr	ate io	n too dilute	(1)		
							[3]
(C	l) ca	alculat	tion				
	m	ols of	l _o is	$0.508/(2 \times 127) = 0.002$			
	m	ols of	O ₂ is	0.002/2 = 0.001			
	CC		$1 O_2 IS$	0.001/2 = 0.0005 mol dm ⁻³			
							[3]

[Total: 10]

	Page 6		Mark Sc	heme	Syllabus	Paper
			GCE O Level – N	lay/June 2006	5070	02
B9	allow	+ $H^+ \rightarrow N$ full ionic eq	H₄ ⁺ uation showing sp state symbols	ectator ions		
						[1]
	(b) prepa	aration of KC	21			
	● (● r	description of epeat without	ents: HC <i>l</i> (aq) and of a) titration ut the indicator crystallise <i>or</i> to dr	KOH(aq) <i>or</i> K ₂ CO ₃ (aq) <i>or</i> yness	KHCO₃(aq)	
						[4]
	(c)	1 x 138g K	$_{2}CO_{3} \rightarrow 1 \text{ x } 178g$ $D_{3} \rightarrow 3.45 \text{ x } 178/2$	78 (or moles $K_2CO_3 = 3$. K_2SO_4 (or moles $K_2SO_4 = 138g K_2SO_4 = 4.35g$ $SO_4 = 0.025 \times 174 = 4.35g$	0.025);	;
						[3]
	(d) potas	sium ion k	< [≁] structure	2.8.8	(1)	
	chlor	de ion C	Ct structure	2.8.8	(1)	
		for both with ct charges (h K and Cl shown 1)	in centre (1);		

[Total: 10]

Page 7		Mark Scheme	Syllabus	Paper
		GCE O Level – May/June 2006	5070	02
B10(a)	atom	is in brass do not slide as easily		[1]
(b)	(ii) a • <u> </u> • (• (• (• (• (• (colour is blue any 5 of: <u>blue precipitate</u> ; $Cu^{2^+} + 2OH^- \rightarrow Cu(OH)_2$ ALLOW: full equation white precipitate masked by blue one/ ppt lighter blue in a hydroxide alone $Zn^{2^+} + 2OH^- \rightarrow Zn(OH)_2$ ALLOW: full equation precipitates are copper hydroxide and zinc hydroxide or formulae (can be from the equations) part of the precipitate redissolves in excess (sodium hydroxide)	correct	
	ſ	redissolves in excess (sodium hydroxide)		[6
(c)		<u>names</u> : B is zinc chloride C is copper	(1) (1)	
	(ii) <u>i</u>	onic equation	(1)	
	Z	$Zn + 2 H^+ \rightarrow Zn^{2+} + H_2$		
				[3
				[Total: 10
B11(a)	ester	linkage		[1
(b)	(i) r	monomers are amino acids	(1)	
	(ii) r	nylon is hydrolysed (by the acid)	(1)	
				[2
(c)	(i) క	structure of pvc:	(1)	
	-	–(CH ₂ — CHC <i>l</i>) _n — <i>or</i> full structure		
	(ii) \	weak forces <u>between</u> the <u>molecules</u>	(1)	
	á	allow weak van der Waals forces <u>between molecules</u>		
		(orange) bromine is decolourised t is an addition reaction	(1) (1)	
		ovc has no double bonds	(1)	[5
(d)	two f	rom.		[0
(u)	polyt	hene is not biodegradable es litter <i>or</i> use of land fill sites	(1)	
		/poisonous fumes if burnt	(1) (1)	
				[2

[Total: 10]